تأثیر هشت هفته تمرین تناوبی شدید بر مقادیر T-AMPK ،p-AMPK و فیبروز بافت قلبی و شاخص‌های گلیسمیک موش‌های دیابتی شده‌ی نر نژاد ویستار

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 دانشیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

2 استاد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

3 استادیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

4 دانشجوی دکتری بیوشیمی و متابولیسم فعالیت ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

10.22049/jahssp.2022.27979.1494

چکیده

هدف: تمرین تناوبی شدید (HIIT)، با افزایش نیاز سلول به انرژی در کوتاه­ترین زمان، عوامل متابولیکی را فعال می­سازد؛ با این حال نقش آن در فعال­سازی AMPK و متعاقباً کاهش فیبروز بافت قلبی مبتلایان به دیابت نوع دو (T2DM) نامشخص است. لذا پژوهش حاضر جهت تعیین تأثیر هشت هفته تمرین تناوبی شدید بر مقادیر AMPK و فیبروز بافت قلبی، گلوکز و انسولین خون ناشتا و مقاومت به انسولین موش­های دیابتی شده از طریق استرپتوزوسین صورت گرفت. روش شناسی: در مطالعه تجربی حاضر 20 سر (96/49±16/293 گرم) موش صحرائی نر بالغ سفید نژاد ویستار در چهار گروه (5n=) کنترل سالم، کنترل دیابتی، تمرین سالم و تمرین دیابتی قرار گرفتند. پروتکل HIIT به مدت هشت هفته (پنج جلسه در هفته شامل سه مرحله گرم کردن، بدنه اصلی تمرین و سرد کردن در هر جلسه) روی نوارگردان صورت گرفت. شدت تمرین برابر با 90-85% سرعت بیشینه (~30-27 متر بر دقیقه) در 12-6 تناوب دو دقیقه­ای با استراحت فعال سه دقیقه‌ای شامل دویدن‌های ادامه‌دار در شدت 30% سرعت بیشینه روی نوارگردان انجام پذیرفت. از آزمون­های شاپیرو-ویلک، آنالیز واریانس دو راهه 2×2، آنالیز واریانس یک راهه و تعقیبی بونفرونی در سطح معنی­داری 05/0>0 به­منظور تجزیه و تحلیل داده­ها استفاده شد. یافته‌ها: افزایش معنی­دار مقادیر p-AMPK و p-AMPK/T-AMPK بافت قلبی در موش­های تمرین سالم نسبت به سایر گروه­ها مشاهده شد (p<0/05). همچنین فیبروز بافت قلبی در گروه تمرین دیابتی کاهش معنی­داری نسبت به گروه کنترل دیابتی یافت (p<0/05). این حال در گروه تمرین دیابتی مقادیر p-AMPK و p-AMPK/T-AMPK بافت قلبی تحت تأثیر قرار نگرفت (p>0/05) و نیز T-AMPK در گروه کنترل دیابتی افزایش معنی­داری نسبت به سایر گروه­ها معنی­داری نشان داد (p<0/05). نتیجه­گیری: احتمالاً کاهش فیبروز بافت قلبی موش­های T2DM، حداقل در طول هشت هفته HIIT، مستقل از AMPK عمل می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of eight weeks of high intensity interval training on cardiac tissue of p-AMPK, T-AMPK and fibrosis and glycemic index in male Wistar diabetic rats

نویسندگان [English]

  • Saeed Dabagh Nikookheslat 1
  • Ramin Amirsasan 2
  • Mostafa Khani 3
  • Morteza Nikkhesal 4
1 Associate Professor, Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
2 Professor of Exercise Physiology, Faculty of Physical Education and sport Sciences, University of Tabriz, Tabriz, Iran
3 Assistant Professor, Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
4 Student of the Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

Aim:   Intense interval training (HIIT) activates metabolic factors by increasing the cell's need for energy in the shortest time; However, its role in AMPK activation and subsequent reduction of cardiac tissue fibrosis in type 2 diabetes (T2DM) patients is unclear. Therefore, the present study was conducted to determine the effect of eight weeks of High intensity interval training on AMPK levels and cardiac tissue fibrosis, fasting blood glucose and insulin, and insulin resistance in streptozocin-induced diabetic rats. Methods: In this experimental study, 20 heads (293.16 ± 49.96 g) of adult white Wistar rats were divided into four groups (n=5): healthy control, diabetic control, healthy exercise, and diabetic exercise. The HIIT protocol was performed on a treadmill for eight weeks (five sessions per week including three phases of warm-up, main body of exercise and cool-down in each session). The training intensity was 85-90% of the maximum speed (~27-30 m/min) in 6-12 two-minute intervals with a three-minute active rest, including continuous running at an intensity of 30% of the maximum speed on the treadmill. Shapiro-Wilk, 2x2 two-way analysis of variance, one-way analysis of variance and Bonferroni's post hoc tests at a significance level of <0.05 were used to analyze the data. Results: A significant increase in p-AMPK and p-AMPK/T-AMPK values ​​of heart tissue was observed in healthy exercise rats compared to other groups (p<0.05). Also, cardiac tissue fibrosis in the diabetic exercise group was significantly reduced compared to the diabetic control group (p<0.05). However, in the diabetic exercise group, the values ​​of p-AMPK and p-AMPK/T-AMPK in cardiac tissue were not affected (p>0.05) and Also, T-AMPK showed a significant increase in the diabetic control group compared to other groups (p<0.05). Conclusions: Probably, reduction of cardiac tissue fibrosis in T2DM rats, at least during eight weeks of HIIT, is independent of AMPK.

کلیدواژه‌ها [English]

  • AMPK
  • Fibrosis
  • High intensity interval training
  • Type 2 diabetes
  • Insulin sensitivity
  1. Zanuso S, Sacchetti M, Sundberg CJ, Orlando G, Benvenuti P, Balducci S. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular adaptations. A review of the evidence. Br J Sports Med. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2017;51(21):1533–8.
  2. Agostini D, Natalucci V, Baldelli G, De Santi M, Donati Zeppa S, Vallorani L, et al. New insights into the role of exercise in inhibiting mTOR signaling in triple-negative breast cancer. Oxid Med Cell Longev. Hindawi; 2018;2018.
  3. Horman S, Beauloye C, Vanoverschelde J-L, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep. Springer; 2012;9(3):164–73.
  4. Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. Springer; 2012;17(3):325–44.
  5. Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. Am Diabetes Assoc; 2008;57(12):3297–306.
  6. Nikookheslat Dabbagh S, Novin N, Karimi P. Effect of Six Week High Intensity Interval Training (HIIT) with Chia Seed Supplementation on VEGF and Cardiac Fibrosis in Male Wistar Diabetic [Theses]. 2018;169. (In Persian).
  7. Atabakhshian R, Raygan F, Kazerouni F. Galectin-3 in fibrosis and heart failure. Clin Excell. Clinical Excellence; 2014;2(2):36–49.
  8. Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. Elsevier; 2017;38:18–27.
  9. Daskalopoulos EP, Dufeys C, Bertrand L, Beauloye C, Horman S. AMPK in cardiac fibrosis and repair: actions beyond metabolic regulation. J Mol Cell Cardiol. Elsevier; 2016;91:188–200.
  10. Cheng D, Xu Q, Wang Y, Li G, Sun W, Ma D, et al. Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. J Transl Med. BioMed Central; 2021;19(1):1–18.
  11. Zhao Y, Sun D, Chen Y, Zhan K, Meng Q, Zhang X, et al. Si-Miao-Yong-An Decoction attenuates isoprenaline-induced myocardial fibrosis in AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways. Biomed Pharmacother. Elsevier; 2020;130:110522.
  12. Woo JH, Shin KO, Lee YH, Jang KS, Bae JY, Roh HT. Effects of treadmill exercise on skeletal muscle mTOR signaling pathway in high-fat diet-induced obese mice. J Phys Ther Sci. The Society of Physical Therapy Science; 2016;28(4):1260–5.
  13. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol. Wiley Online Library; 2008;214(2):316–21.
  14. Nagata K, Miyachi M, Kato MF, Yazawa H, Ohtake M, Tsuboi K, et al. Exercise Training Alters Left Ventricular Geometry and Improves Heart Failure in Dahl Salt-Sensitive Hypertensive Rats: Role of PI3K p110α/γ-Akt-mTOR-Mediated Activation of Proangiogenic Signaling. Am Heart Assoc; 2008.
  15. Holloway TM, Bloemberg D, Da Silva ML, Simpson JA, Quadrilatero J, Spriet LL. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PLoS One. Public Library of Science San Francisco, CA USA; 2015;10(3):e0121138.
  16. Rahmani M, Sadeghi A, Pourrazi H, Ghiyami SH. The Effect of Eight-Week High Intensity Interval Training (HIIT) and Caffeine Intake On The p38α and hsp70 Protein expression in liver in Diabetic rats induced streptozotocin. J Appl Heal Stud Sport Physiol. Azarbaijan Shahid Madani University; 2022;9(1):83–99.
  17. Gandmani RT, Demirchi A, Mirzaei B. The effect of high and moderate resistance training intensities on the gen expression of AMPK, PGC-1α, TFAM and cytochrome-C of cardiac myocytes in elderly Wistar rats. Iran J Physiol Pharmacol. 2022;6(16):1–9.
  18. Wahl P, Bloch W, Proschinger S. The Molecular Signature of High-intensity Training in the Human Body. Int J Sports Med. Georg Thieme Verlag KG; 2022;43(03):195–205.
  19. Kido K, Sase K, Yokokawa T, Fujita S. enhanced skeletal muscle insulin sensitivity after acute resistance-type exercise is upregulated by rapamycin-sensitive mtoR complex 1 inhibition. Sci Rep. Nature Publishing Group; 2020;10(1):1–12.
  20. Sun X, Lessard SJ, An D, Koh H, Esumi H, Hirshman MF, et al. Sucrose nonfermenting AMPK‐related kinase (SNARK) regulates exercise‐stimulated and ischemia‐stimulated glucose transport in the heart. J Cell Biochem. Wiley Online Library; 2019;120(1):685–96.
  21. Liu H-T, Pan S-S. Late exercise preconditioning promotes autophagy against exhaustive exercise-induced myocardial injury through the activation of the AMPK-mTOR-ULK1 pathway. Biomed Res Int. Hindawi; 2019;2019.
  22. Ziemann E, Grzywacz T, Luszczyk M, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. LWW; 2011;25(4):1104–12.
  23. Jokar M, Sherafati Moghadam M, Daryanoosh F. The effect of a period of high-intensity interval training on the content of AMPK and PGC-1α proteins in the heart muscle tissue of rats with type 2 diabetes. Daneshvar Med. Shahed University; 2021;29(1):23–34.
  24. Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sport Med Heal Sci. Elsevier; 2019;1(1):24–32.
  25. Ghahramani MH, Agha-Alinejhad H, Molanouri Shamsi M. Effect of Different Concurrent Training Protocols on Muscle Strength, Serum Testosterone and Cortisol Level in Young Wrestlers. J Appl Heal Stud Sport Physiol. Azarbaijan Shahid Madani University; 2022;9(1):1–11.
  26. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, et al. AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol. Taylor & Francis; 2010;45(4):276–95.
  27. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology. Karger Publishers; 2015;130(4):211–20.
  28. Menz V, Marterer N, Amin SB, Faulhaber M, Hansen AB, Lawley JS. Functional vs. Running low-volume high-intensity interval training: Effects on vo2max and muscular endurance. J Sports Sci Med. Dept. of Sports Medicine, Medical Faculty of Uludag University; 2019;18(3):497.
  29. Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. Biomed Res Int. Hindawi; 2013;2013.
  30. Brown MB, Neves E, Long G, Graber J, Gladish B, Wiseman A, et al. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension. Am J Physiol Integr Comp Physiol. American Physiological Society Bethesda, MD; 2017;312(2):R197–210.
  31. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi C V. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol. 1979;47(6):1278–83.
  32. PITHON-CURI TNIAC. Aprogram Of Moderate Physical Training For Wistar Rats Based On Maximal Oxygen Consumption. J strength Cond Res. 2007;21(3):0.
  33. Liao J, Li Y, Zeng F, Wu Y. Regulation of mTOR pathway in exercise-induced cardiac hypertrophy. Int J Sports Med. © Georg Thieme Verlag KG; 2015;36(05):343–50.
  34. Jokar M, Zarei F, Moghadam MS, Palavani HA. Effect of 8-Week Endurance Training on the Content of Mtor and SREBP1 Proteins in Subcutaneous Fat Tissue in Obese Type 2 Diabetic Male Sprague-Dawley Rats. J Shahid Sadoughi Univ Med Sci. 2020;28(6):2755–65. (In Persian).
  35. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. MDPI; 2020;12(4):925.
  36. Łukaszuk B, Bialuk I, Górski J, Zajączkiewicz M, Winnicka MM, Chabowski A. A single bout of exercise increases the expression of glucose but not fatty acid transporters in skeletal muscle of IL-6 KO mice. Lipids. Springer; 2012;47(8):763–72.
  37. Dela F, Ploug T, Handberg A, Petersen LN, Larsen JJ, Mikines KJ, et al. Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes. Am Diabetes Assoc; 1994;43(7):862–5.
  38. Zhu X-J, Chen L-H, Li J-H. The effects of aerobic exercise on plasma adiponectin level and adiponectin-related protein expression in myocardial tissue of ApoE-/-mice. J Sports Sci Med. Dept. of Sports Medicine, Medical Faculty of Uludag University; 2015;14(4):877.
  39. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep. Nature Publishing Group; 2017;7(1):1–10.
  40. Amri J, Parastesh M, Sadegh M, Latifi SA, Alaee M. High-intensity interval training improved fasting blood glucose and lipid profiles in type 2 diabetic rats more than endurance training; possible involvement of irisin and betatrophin. Physiol Int. Akadémiai Kiadó Budapest; 2019;106(3):213–24.
  41. Tabari E, Mohebbi H, Karimi P, Moghaddami K, Khalafi M. The effects of interval training intensity on skeletal muscle pgc-1α in type2 diabetic male rats. Iran J Diabetes Metab. Iranian Journal of Diabetes and Metabolism; 2019;18(4):179–88.
  42. Mateo-Gallego R, Madinaveitia-Nisarre L, Giné-Gonzalez J, Bea AM, Guerra-Torrecilla L, Baila-Rueda L, et al. The effects of high-intensity interval training on glucose metabolism, cardiorespiratory fitness and weight control in subjects with diabetes: systematic review a meta-analysis. Diabetes Res Clin Pract. Elsevier; 2022;109979.
  43. َAzali Alamdari K, Khodaei O. The effect of high intensity interval training on serum adiponectin, insulin resistance and markers of metabolic syndrome in men with metabolic syndrome. J Appl Heal Stud Sport Physiol. Azarbaijan Shahid Madani University; 2018;5(1):69–76.
  44. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect on glycaemic control of low‐volume high‐intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes, Obes Metab. Wiley Online Library; 2018;20(5):1131–9.
  45. Mahmoudi Y, Gholami M, Nikbakht H, Ebrahim K, Bakhtiyari S. Effect of high intensity interval training with metformin on lipid profiles and HbA1c in diabetic rats. Iran J Diabetes Obes. Iranian Journal of Diabetes and Obesity; 2018;10(3):144–50.
  46. Novoa U, Arauna D, Moran M, Nuñez M, Zagmutt S, Saldivia S, et al. High-intensity exercise reduces cardiac fibrosis and hypertrophy but does not restore the nitroso-redox imbalance in diabetic cardiomyopathy. Oxid Med Cell Longev. Hindawi; 2017;2017.
  47. Soori R, Amini AA, Choobineh S, Eskandari A, Behjat A, Ghram A, et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch Physiol Biochem. Taylor & Francis; 2022;128(1):1–6.
  48. Shi X, Chen X, Qiu X, Luo W, Luo X, Liu H, et al. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity on Peak Oxygen Uptake and Myocardial Fibrosis in Patients With Myocardial Infarction: Protocol for a Randomized Controlled Trial. Front Cardiovasc Med. Frontiers Media SA; 2022;9.
  49. Mack M. Inflammation and fibrosis. Matrix Biol. Elsevier; 2018;68:106–21.
  50. Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res. Oxford University Press; 2017;113(4):389–98.
  51. Han S, Chandel NS. Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol. American Thoracic Society; 2021;65(2):134–45.
  52. Salvador Jr DB, Gamba MR, Gonzalez-Jaramillo N, Gonzalez-Jaramillo V, Raguindin PFN, Minder B, et al. Diabetes and myocardial fibrosis: a systematic review and meta-analysis. Cardiovasc Imaging. American College of Cardiology Foundation Washington DC; 2022;15(5):796–808.
  53. Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LMD. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol. Elsevier; 2011;50(6):1035–43.
  54. Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. Elsevier; 2021;119:154766.
  55. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. Springer; 2018;17(1):1–14.
  56. Luneva EB, Vasileva AA, Karelkina E V, Boyarinova MA, Mikhaylov EN, Ryzhkov A V, et al. Simple Predictors for Cardiac Fibrosis in Patients with Type 2 Diabetes Mellitus: The Role of Circulating Biomarkers and Pulse Wave Velocity. J Clin Med. MDPI; 2022;11(10):2843.
  57. Zhou G, Sebhat IK, Zhang BB. AMPK activators–potential therapeutics for metabolic and other diseases. Acta Physiol. Wiley Online Library; 2009;196(1):175–90.
  58. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes, Metab Syndr Obes targets Ther. Dove Press; 2014;7:241.
  59. Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI insight. American Society for Clinical Investigation; 2018;3(12).
  60. Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, et al. Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One. Public Library of Science San Francisco, CA USA; 2015;10(6):e0129971.
  61. Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev. Hindawi; 2017;2017.
  62. Sciarretta S, Forte M, Frati G, Sadoshima J. New insights into the role of mTOR signaling in the cardiovascular system. Circ Res. Am Heart Assoc; 2018;122(3):489–505.