تاثیر تمرین تناوبی شدید و مصرف کورکومین بر سطوح تروپونین I و کراتین کیناز سرمی موشهای نر تیمار شده با ایزوپرترنول

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه تربیت بدنی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.

2 استادیار ، گروه تربیت بدنی،دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران.

10.22049/jahssp.2021.27276.1358

چکیده

هدف: فعالیت بدنی منظم می‌تواند در پیشگیری و بازتوانی بیماریهای قلبی- عروقی مؤثر واقع شود. با این حال، اثر ترکیبی تمرین تناوبی شدید و مصرف مکمل کورکومین بر فاکتورهای آسیب قلبی درک نشده است؛ هدف از این تحقیق تعیین تاثیر تمرین تناوبی شدید و مصرف کورکومین بر سطوح تروپونین I و کراتین کیناز سرمی موش‌های نر تیمار شده با ایزوپرترنول بود. روش شناسی: تعداد 40 سر موش صحرائی نر با تزریق درون صفاقی ایزوپرترنول(با دوز 100 میلی‌گرم بر هر کیلوگرم وزن بدن در دو روز متوالی) دچار انفاکتوس میوکارد شدند و به طور تصادفی در چهار گروه تمرین، مکمل کورکومین، توام (تمرین و مکمل کورکومین) و کنترل قرار گرفتند. در گروه تمرین، برنامه تمرینی با تناوب 4 دقیقه دویدن و سپس 2 دقیقه ریکاوری فعال به ترتیب با شدت 90-85 و 60 – 50 درصد VO2maxبود؛ که 60 دقیقه در یک روز؛ 5 بار در هفته به مدت هشت هفته انجام شد. در گروه مکمل، کورکومین روزانه 15 میلی‌گرم به ازای هر کیلوگرم وزن بدن به صورت گاواژ خوراکی استفاده شد. سطوح CK-MBوcTnI سرمی به روش الایزا اندازه‌گیری شدند. برای تجزیه‌وتحلیل داده‎ها از آزمون آماری آنوای یک‌طرفه استفاده شد. یافته‌ها: فقط مداخلات کورکومین و توام موجب کاهش معنی‌داری در سطوح cTnI سرمی شد (04/0P= و 001/0P=) تمرین به تنهایی تاثیری نداشت (44/0P=). همچنین، فقط تاثیر کورکومین و توام (کورکومین و تمرین تناوبی شدید) موجب کاهش معنی‌دار سطوح CK-MB شدند(002/0P= و 008/0P=). با این وجود، تمرین تناوبی شدید به تنهایی تاثیری معنی‌داری بر سطوح سرمی CK-MB نداشت (27/0P=). نتیجهگیری: بنابر نتایج تحقیق تمرین تناوبی شدید احتمالا باعث افزایش نشانگرهای آسیب قلبی (تروپونین I و کراتین کیناز) می‌شود و کورکومین قادر است تاحدودی نشانگرهای آسیب قلبی را کاهش دهد، اما به دلیل محدودیت‌ها و کمبود شواهد در جمعیت سکته قلبی، هنوز به بررسی‌های بیشتری نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of HIIT and curcumin consumption on serum troponin I and creatine kinase levels in isopretrenol-treated male mice

نویسندگان [English]

  • Amir Dadashzadeh 1
  • Roghayeh Poozesh Jadidi 2
1 MS Student of Exercise Physiology, Department of Physical Education, Tabriz branch, Islamic Azad University, Tabriz, Iran.
2 Assistant Prof., Department of Exercise Physiology, Tabriz branch, Islamic Azad University, Tabriz, Iran.
چکیده [English]

Aim:  Regular physical activity can be effective in preventing and rehabilitating cardiovascular disease. The aim of this study was to determine the effect of aerobic training and curcumin consumption on serum troponin I and creatine kinase levels in male rats treated with isopretrenol.  Methods: 40 male rats were randomized in four groups including: control, HIIT, curcumin, HIIT+curcumin. HIIT were conducted for 8 weeks (5 d/w, 60 min/session (with 4 min running at 85-90% of Vo2max and 2 min recovery at 50-60% of Vo2max intervals) and curcumin 15 mg/bw.day, were consumed orally for entire the study period. Results: Only curcumin and Concomitant interventions significantly reduced serum cTnI levels  (P=0.04, P=0.001) and exercise alone had no effect (P=0.44). Also, only the effect of curcumin and  Concomitant (curcumin and HIIT) caused a significant decrease in CK-MB levels (P=0.002, P=0.008). However, HIIT alone had no significant effect on serum CK-MB levels (P=0.27). Conclusion: According to research, HIIT increases the markers of heart damage (troponin I and creatine kinase) and curcumin is able to reduce the markers of heart damage to some extent, However, more researches remains to be done because of the study limitations and lack of similar evidence in myocardial infarction populations.

کلیدواژه‌ها [English]

  • Troponin
  • HIIT
  • Curcumin
  • CK-MB
1.         Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. European journal of heart failure. 2020;22(8):1342-56.
2.         Jameson JL. Harrison's principles of internal medicine: McGraw-Hill Education; 2018.
3.         Najafipour H, Kahnooji M, Baneshi MR, Yeganeh M, Gohari MA, Farokhi MS, et al. The Prevalence and 5-Year Incidence Rate of Low Physical Activity in an Urban Population of 10,000 in Southeastern Iran: Relationship With Other Cardiovascular Risk Factors. Journal of Physical Activity and Health. 2020;17(4):435-42.
4.         Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European heart journal. 2016;37(27):2129-200.
5.         Oeing C, Tschöpe C, Pieske B. The new ESC Guidelines for acute and chronic heart failure 2016. Herz. 2016;41(8):655.
6.         Collinson P, Gaze D, Stubbs P, Swinburn J, Khan M, Senior R, et al. Diagnostic and prognostic role of cardiac troponin I (cTnI) measured on the DPC Immulite. Clinical biochemistry. 2006;39(7):692-6.
7.         Mueller C, Twerenbold R, Reichlin T. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. Clinical chemistry. 2019;65(3):490-1.
8.         Rocco E, La Rosa G, Liuzzo G, Biasucci LM. High-sensitivity cardiac troponin assays and acute coronary syndrome: a matter of sex? Journal of Cardiovascular Medicine. 2019;20(8):504-9.
9.         Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules. 2019;9(8):301.
10.       Boarescu P-M, Chirilă I, Bulboacă AE, Bocșan IC, Pop RM, Gheban D, et al. Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxidative medicine and cellular longevity. 2019;2019.
11.       Tanwar V, Sachdeva J, Golechha M, Kumari S, Arya DS. Curcumin protects rat myocardium against isoproterenol-induced ischemic injury: attenuation of ventricular dysfunction through increased expression of hsp27 alongwith strengthening antioxidant defense system. Journal of cardiovascular pharmacology. 2010;55(4):377-84.
12.       Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. Journal of Herbmed Pharmacology. 2018;7(4):211-9.
13.       Mokhtari-Zaer A, Marefati N, Atkin SL. The protective role of curcumin in myocardial ischemia-reperfusion injury. 2018;234(1):214-22.
14.       Chen TH, Yang YC, Wang JC, Wang JJ. Curcumin treatment protects against renal ischemia and reperfusion injury-induced cardiac dysfunction and myocardial injury. Transplantation proceedings. 2013;45(10):3546-9.
15.       Liu H, Wang C, Qiao Z, Xu Y. Protective effect of curcumin against myocardium injury in ischemia reperfusion rats. Pharmaceutical biology. 2017;55(1):1144-8.
16.       Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. The Journal of clinical investigation. 2008;118(3):868-78.
17.       Toth K, Nyakas C, van der Zee EA, Schoemaker RG. EFFECTS OF AEROBIC EXERCISE ON ISOPROTERENOL-INDUCED CARDIAC DAMAGED RATS ASSOCIATED WITH BRAIN FUNCTIONS. The FASEB Journal. 2018;32(1_supplement):740.5-.5.
18.       Ghanimati R, Rajabi H, Ramezani F, Ramez M, Bapiran M, Nasirinezhad F. The effect of preconditioning with high-intensity training on tissue levels of G-CSF, its receptor and C-kit after an acute myocardial infarction in male rats. BMC cardiovascular disorders. 2020;20(1):1-9.
19.       Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports medicine. 2012;42(7):587-605.
20.       Wang L, Gao K, Wang D. Exercise training has restorative potential on myocardial energy metabolism in rats with chronic heart failure. Iranian journal of basic medical sciences. 2018;21(8):818.
21.       Zuhl M, Kravitz L. HIIT vs continuous endurance training: battle of the aerobic titans. IDEA Fitness journal. 2012;9(2):34-40.
22.       Wisløff U, Ellingsen Ø, Kemi OJ. High-intensity interval training to maximize cardiac benefits of exercise training? Exercise and sport sciences reviews. 2009;37(3):139-46.
23.       Liao Z, Li D, Chen Y, Li Y, Huang R, Zhu K, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. Journal of Cellular and Molecular Medicine. 2019;23(12):8328-42.
24.       Wang B, Zhou R, Wang Y, Liu X, Shou X, Yang Y, et al. Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomedicine & Pharmacotherapy. 2020;131:110690.
25.       Islam D, Banerjee Shanta M, Akhter S, Lyzu C, Hakim M, Islam MR, et al. Cardioprotective effect of garlic extract in isoproterenol-induced myocardial infarction in a rat model: assessment of pro-apoptotic caspase-3 gene expression. Clinical Phytoscience. 2020;6(1):67.
26.       Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes. 2013;62(7):2287-94.
27.       Biswas J, Roy S, Mukherjee S, Sinha D, Roy MJAPjocpA. Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. 2010;11(1):239.
28.       Grimm D, Elsner D, Schunkert H, Pfeifer M, Griese D, Bruckschlegel G, et al. Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. Cardiovascular research. 1998;37(1):91.
29.       Sushamakumari S, Jayadeep A, Kumar J, Menon V. Effect of carnitine on malondialdehyde, taurine and glutathione levels in heart of rats subjected to myocardial stress by isoproterenol. Indian Journal of Experimental Biology. 1989;27(2):134.
30.       Nirmala C, Puvanakrishnan R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Molecular and cellular biochemistry. 1996;159(2):85-93.
31.       Nalcakan GR. The effects of sprint interval vs. continuous endurance training on physiological and metabolic adaptations in young healthy adults. Journal of human kinetics. 2014;44(1):97-109.
32.       Rejaei SF, Mojtahedi H, Marandi M, Rahnama N, Movahedi AR, Bambaeichi E, et al. The Effects of Resistance, Endurance, and Combined Exercise on Cardiac Biomarkers in Active Subjects. Journal of Isfahan Medical School. 2012;30(186).
33.       Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology. 2010;56(3):169-76.
34.       Eijsvogels T, Hoogerwerf MD, Oudegeest-Sander MH, Hopman M, Thijssen D. The impact of exercise intensity on cardiac troponin I release. Int J Cardiol. 2014;171(1):e3-e4.
35.       Eijsvogels TM, Veltmeijer MT, George K, Hopman MT, Thijssen DH. The impact of obesity on cardiac troponin levels after prolonged exercise in humans. European journal of applied physiology. 2012;112(5):1725-32.
36.       Wakshlag J, Kraus M, Gelzer A, Downey R, Vacchani P. The influence of high‐intensity moderate duration exercise on cardiac troponin I and C‐reactive protein in sled dogs. Journal of veterinary internal medicine. 2010;24(6):1388-92.
37.       Carranza-García L, George K, Serrano-Ostáriz E, Casado-Arroyo R, Caballero-Navarro A, Legaz-Arrese A. Cardiac biomarker response to intermittent exercise bouts. International journal of sports medicine. 2011;32(05):327-31.
38.       Faramarzi M, Gaeini A, Kordi M. Effest of intense interval physical activity and carbohydrate supplement on biomarkers of cardiac (cTnI, CK-MB) in soccer players. Olympic. 2007;15(3):35-44.
39.       Wisloff U, Stoylen A, Loennechen JP, Bruvold M. Rognmo, 0., Haram, PM, et al. 2007. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation.115(24):3086-94.
40.       . !!! INVALID CITATION !!!
41.       Serrano-Ostáriz E, Legaz-Arrese A, Terreros-Blanco JL, López-Ramón M, Cremades-Arroyos D, Alvarez-Izquierdo S, et al. Cardiac biomarkers and exercise duration and intensity during a cycle-touring event. Clinical Journal of Sport Medicine. 2009;19(4):293-9.
42.       Legaz-Arrese A, Carranza-García LE, Navarro-Orocio R, Valadez-Lira A, Mayolas-Pi C, Munguía-Izquierdo D, et al. Cardiac biomarker release after endurance exercise in male and female adults and adolescents. The Journal of pediatrics. 2017;191:96-102.
43.       Li F, Yi L, Yan H, Wang X, Nie J, Zhang H, et al. High-sensitivity cardiac troponin T release after a single bout of high-intensity interval exercise in experienced marathon runners. Journal of Exercise Science & Fitness. 2017;15(2):49-54.
44.       Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? European Heart Journal: Acute Cardiovascular Care. 2018;7(6):553-60.
45.       Yeh C-H, Chen T-P, Wu Y-C, Lin Y-M, Lin PJ. Inhibition of NFκB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion1. Journal of Surgical Research. 2005;125(1):109-16.
46.       Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. British journal of pharmacology. 2012;167(7):1550-62.
47.       Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. Journal of molecular and cellular cardiology. 2015;79:1-12.
48.       Pang X-F, Zhang L-H, Bai F, Wang N-P, Garner RE, McKallip RJ, et al. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug design, development and therapy. 2015;9:6043.
49.       Laposy CB, Freitas SdBZ, Louzada AN, Rubinsky-Elefant G, Giuffrida R, Nogueira RMB, et al. Cardiac markers: profile in rats experimentally infected with Toxocara canis. Revista Brasileira de Parasitologia Veterinária. 2012;21(3):291-3.
50.       Jo MS, Lee J, Kim S-Y, Kwon HJ, Lee HK, Park DJ, et al. Comparison between creatine kinase MB, heart-type fatty acid-binding protein, and cardiac troponin T for detecting myocardial ischemic injury after cardiac surgery. Clinica Chimica Acta. 2019;488:174-8.
51.       Way KL, Sultana RN, Sabag A, Baker MK, Johnson NA. The effect of high Intensity interval training versus moderate intensity continuous training on arterial stiffness and 24 h blood pressure responses: A systematic review and meta-analysis. Journal of science and medicine in sport. 2019;22(4):385-91.
52.       Moonikh K, Kashef M, Mahmoudi K, Salehpour M. The effect of high-intensity interval training (HIIT) with Quercetin supplementation on oxidative stress and level of concentric pathologic hypertrophy in cardiovascular patients after angioplast. Tehran University Medical Journal TUMS Publications. 2020;78(5):304-12.
53.       Fu F, Nie J, Tong T. Serum cardiac troponin T in adolescent runners: effects of exercise intensity and duration. International journal of sports medicine. 2009;30(03):168-72.
54.       McLaurin MD, Apple FS, Voss EM, Herzog CA, Sharkey SW. Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle. Clinical chemistry. 1997;43(6):976-82.
55.       Tartibian B, Ebrahimi Torkamani B. Inflammatory markers and muscle damage indices response to intense exercise in healthy boys: relationship between the markers. Journal of Practical Studies of Biosciences in Sport. 2016;4(8):31-41.
56.       König D, Schumacher YO, Heinrich L, Schmid A, Berg A, Dickhuth H-H. Myocardial stress after competitive exercise in professional road cyclists. Medicine and science in sports and exercise. 2003;35(10):1679-83.
57.       Eijsvogels TM, Hoogerwerf MD, Maessen MF, Seeger JP, George KP, Hopman MT, et al. Predictors of cardiac troponin release after a marathon. Journal of science and medicine in sport. 2015;18(1):88-92.
58.       Rahnama N, Faramarzi M, Gaeini AA. Effects of intermittent exercise on cardiac troponin I and creatine kinase-MB. International journal of preventive medicine. 2011;2(1):20.
59.       Smith J, Garbutt G, Lopes P, Pedoe DT. Effects of prolonged strenuous exercise (marathon running) on biochemical and haematological markers used in the investigation of patients in the emergency department. British journal of sports medicine. 2004;38(3):292-4.
60.       Sharma M, Kishore K, Gupta SK, Joshi S, Arya DS. Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats. Molecular and cellular biochemistry. 2001;225(1):75-83.
61.       Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S, Gupta SK. Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic & clinical pharmacology & toxicology. 2004;94(4):184-90.
62.       Nazam Ansari M, Bhandari U, Pillai K. Protective role of curcumin in myocardial oxidative damage induced by isoproterenol in rats. Human & experimental toxicology. 2007;26(12):933-8.
63.       Mythili S, Malathi N. Diagnostic markers of acute myocardial infarction. Biomedical reports. 2015;3(6):743-8.