بررسی تأثیر هشت هفته تمرین تناوبی با شدت بالا و تمرین استقامتی با شدت متوسط همراه با مکمل دهی کوئرستین بر بیان ژن‌ PLIN2 و ATGL کبد موش های صحرایی چاق دیابتی

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مدیریت ورزشی، دانشکده علوم تربیتی و روان شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22049/jahssp.2024.29164.1604

چکیده

هدف: چاقی باعث التهاب مزمن شده و التهاب موجب بروز مقاومت انسولینی در بیماری دیابت نوع 2 (T2DM) می­گردد. بدین ترتیب، هدف از مطالعه حاضر بررسی تأثیر هشت هفته تمرین تناوبی با شدت بالا و تمرین استقامتی با شدت متوسط همراه با مکمل­دهی کوئرستین بر بیان ژن­ PLIN2 و ATGL کبد موش­های صحرایی ­چاق دیابتی بود. روش شناسی: چهل و دو سر موش صحرایی نر ویستار با 8 هفته سن تهیه و تعداد 36 سر از این حیوانات پس از 8 هفته رژیم غذایی پرچرب مورد القای دیابت قرار گرفتند. موش­­های صحرایی به گروه­های زیر تقسیم­بندی شدند (6n=): سالم کنترل، دیابت کنترل، دیابت مکمل کوئرستین، دیابت تمرین تناوبی با شدت بالا (HIIT)، دیابت تمرین تداومی با شدت متوسط (MICT)، دیابت تمرین HIIT به همراه مکمل کوئرستین و دیابت تمرین MICT به همراه مکمل کوئرستین. برای دو گروه تمرینی 8 هفته تمرین HIIT با و بدون مکمل کوئرستین و برای دو گروه دیگر 8 هفته تمرین MICT با و بدون مکمل کوئرستین روی نوار گردان اجرا شد. 72 ساعت پس از آخرین جلسه تمرین برای بررسی بیان ژن­های PLIN2 و ATGL بافت کبد جدا شد. از آزمون تحلیل واریانس دو راهه با آزمون تعقیبی توکی (با سطح معناداری 05/0>P) برای بررسی تفاوت بین گروه­های تمرینی استفاده شد. یافته‌ها: پس از 8 هفته مداخله تنها برای میزان بیان ژن ATGL در بین چهار گروه تمرینی تفاوت معنادار دیده شد (001/0=P)، به­طوری که تمرین HIIT و MICT همراه با مصرف کوئرستین به ترتیب با سطح معناداری (001/0=P) و (015/0=P) باعث افزایش بیشتر سطوح آن نسبت به دو گروه تمرینی دیگر شده بود. نتیجه‌گیری: ظاهراً اجرای هر دو نوع تمرین بر بیان ژن ATGL و PLIN2 اثرگذار بوده است و هنگامی که تمرینات به­همراه مصرف کوئرستین باشند این مکمل می­تواند با کنترل سطوح خون به­صورت غیر مستقیم بر بیان ژن ATGL در شرایط بیماری T2DM تأثیرگذار باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of eight weeks of high-intensity interval training and moderate-intensity continuous training with quercetin supplementation on the PLIN2 and ATGL gene expression in the liver of diabetic obese rats

نویسندگان [English]

  • Aydin Valizadeh 1
  • Mojdeh Khajehlandi 1
  • Raha Mohammadi 1
  • Hamed Kheirollahi 2
1 Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Department of Sport Management, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Aim: Obesity causes chronic inflammation, and inflammation causes insulin resistance in type 2 diabetes mellitus (T2DM). Thus, the aim of the present study was to investigate the effect of eight weeks of high-intensity interval training and moderate-intensity continuous training with quercetin supplementation on the gene expression of PLIN2 and ATGL in the liver of diabetic obese rats.
Methods: Forty two male Wistar rats at 8 weeks of age were purchased, and 36 of these animals were induced with T2DM after 8 weeks of high-fat diet. The rats were divided into the following groups (n=6): healthy control, diabetic control, diabetic quercetin supplementation, high-intensity interval training with diabetes (HIIT), moderate-intensity continuous training with diabetes (MICT), HIIT training with quercetin, and MICT training with quercetin. For one training group, 8 weeks of HIIT training and for the other 8 weeks of MICT training on the treadmill were performed. Seventy two hours after the last training session, liver tissues was isolated to check gene expression of PLIN2 and ATGL. Two-way analysis of variance with Tukey's post-hoc test (with a significance level of P<0.05) was used to analyze the data.
Results: After 8 weeks of intervention, a significant difference was seen only in the level of ATGL gene expression between four training groups (P=0/001), so that in HIIT and MICT training groups with quercetin its levels was statistically more than two other training groups with the significant levels of (P=0/001) and (P=0/015), respectively. Conclusions: Apparently, the implementation of both types of exercise has an effect on ATGL and PLIN2 gene expression, and when exercise is combined with quercetin, this supplementation can indirectly affect ATGL gene expression in T2DM conditions by controlling blood levels.

کلیدواژه‌ها [English]

  • Moderate intensity continuous exercise
  • high intensity intermittent exercise
  • liver
  • type 2 diabetes mellitus
  1. Selman A, Burns S, Reddy AP, Culberson J, Reddy PH. The role of obesity and diabetes in dementia. International journal of molecular sciences. 2022;23(16):9267.
  2. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31-55.
  3. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. Journal of epidemiology and global health. 2020;10(1):107.
  4. Cereijo L, Gullón P, Del Cura I, Valadés D, Bilal U, Badland H, et al. Exercise facilities and the prevalence of obesity and type 2 diabetes in the city of Madrid. Diabetologia. 2022;65:150-8.
  5. Bennetsen SL, Feineis CS, Legaard GE, Lyngbæk MP, Karstoft K, Ried-Larsen M. The impact of physical activity on glycemic variability assessed by continuous glucose monitoring in patients with type 2 diabetes mellitus: a systematic review. Frontiers in endocrinology. 2020;11:486.
  6. Esefeld K, Kress S, Behrens M, Zimmer P, Stumvoll M, Thurm U, et al. Diabetes, sports and exercise. Experimental and Clinical Endocrinology & Diabetes. 2021;129(S 01):S52-S9.
  7. Pari L, Maheswari JU. Hypoglycaemic effect of Musa sapientum L. in alloxan-induced diabetic rats. Journal of ethnopharmacology. 1999;68(1-3):321-5.
  8. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. The American journal of clinical nutrition. 2011;93(4):884S-90S.
  9. Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules. 2016;21(6):708.
  10. Sevastre-Berghian AC, Ielciu I, Mitre AO, Filip GA, Oniga I, Vlase L, et al. Targeting oxidative stress reduction and inhibition of HDAC1, MECP2, and NF-kB pathways in rats with experimentally induced hyperglycemia by administration of Thymus marshallianus Willd. extracts. Frontiers in Pharmacology. 2020;11:581470.
  11. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. European journal of pharmacology. 2008;585(2-3):325-37.
  12. Chiş I, Baltaru D, Dumitrovici A, Coseriu A, Radu B, Moldovan R, et al. Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart. Physiology International. 2018;105(3):233-46.
  13. Kim J-H, Kang M-J, Choi H-N, Jeong S-M, Lee Y-M, Kim J-I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutrition research and practice. 2011;5(2):107-11.
  14. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. The Journal of clinical investigation. 2011;121(6):2102-10.
  15. McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS, Cain S, et al. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease [S]. Journal of lipid research. 2013;54(5):1346-59.
  16. Motomura W, Inoue M, Ohtake T, Takahashi N, Nagamine M, Tanno S, et al. Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochemical and biophysical research communications. 2006;340(4):1111-8.
  17. Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipid droplet‐associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology. 2008;47(6):1936-46.
  18. Libby AE, Bales E, Orlicky DJ, McManaman JL. Perilipin-2 deletion impairs hepatic lipid accumulation by interfering with sterol regulatory element-binding protein (SREBP) activation and altering the hepatic lipidome. Journal of Biological Chemistry. 2016;291(46):24231-46.
  19. Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JR, et al. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2016;310(9):G726-G38.
  20. Orlicky DJ, Libby AE, Bales ES, McMahan RH, Monks J, La Rosa FG, et al. Perilipin‐2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra‐hepatocyte actions. The Journal of physiology. 2019;597(6):1565-84.
  21. Kaur S, Auger C, Barayan D, Shah P, Matveev A, Knuth CM, et al. Adipose‐specific ATGL ablation reduces burn injury‐induced metabolic derangements in mice. Clinical and translational medicine. 2021;11(6):e417.
  22. Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, Holm C, et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. Journal of lipid research. 2006;47(11):2392-9.
  23. Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. American journal of physiology-endocrinology and metabolism. 2009;297(2):E289-E96.
  24. Li R, Li G, Hai Y, Li T, Bian Y, Ma T. The effect of aerobic exercise on the lipophagy of adipose tissue in obese male mice. Chemistry and Physics of Lipids. 2022;247:105225.
  25. Pino-de la Fuente F, Quezada L, Sepúlveda C, Monsalves-Alvarez M, Rodríguez JM, Sacristan C, et al. Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2019;1864(12):158519.
  26. Turnbull PC, Longo AB, Ramos SV, Roy BD, Ward WE, Peters SJ. Increases in skeletal muscle ATGL and its inhibitor G0S2 following 8 weeks of endurance training in metabolically different rat skeletal muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2016;310(2):R125-R33.
  27. Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, et al. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Scientific Reports. 2022;12(1):5370.
  28. de Melo DG, Anaruma CP, da Cruz Rodrigues KC, Pereira RM, de Campos TDP, Canciglieri RS, et al. Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice. Scientific reports. 2022;12(1):6913.
  29. Ahmadi M, Kazemzadeh Y, Mirzayan S, Shahedi V, Eizadi M. Improvement of glucose levels and insulin resistance in the absence of change in adiponectin expression in subcutaneous adipose tissue in response to intence interval training in obese diabetic rats. Razi Journal of Medical Sciences. 2021;28(8):33-43.
  30. Khajehlandi M. A comparison of the effect of endurance training on the activities of glutathione peroxidase and superoxide dismutase in the cardiac tissue of healthy and diabetic rats. Yafteh. 2020;21(4).
  31. Eitah HE, Maklad YA, Abdelkader NF, El Din AAG, Badawi MA, Kenawy SA. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicology and applied pharmacology. 2019;365:30-40.
  32. Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, et al. Effect of personalized moderate exercise training on Wistar rats fed with a fructose enriched water. Nutrition & metabolism. 2018;15(1):1-12.
  33. Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, et al. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behavioural brain research. 2019;376:112171.
  34. Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, et al. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. Plos one. 2023;18(10):e0292225.
  35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402-8.
  36. Fu J, Wang Y, Tan S, Wang J. Effects of banana resistant starch on the biochemical indexes and intestinal flora of obese rats induced by a high-fat diet and their correlation analysis. Frontiers in Bioengineering and Biotechnology. 2021;9:575724.
  37. Crighton E, Coghlan ML, Farrington R, Hoban CL, Power MW, Nash C, et al. Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health. Journal of Pharmaceutical and Biomedical Analysis. 2019;176:112834.
  38. Yao Z, Gu Y, Zhang Q, Liu L, Meng G, Wu H, et al. Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults. European journal of nutrition. 2019;58:819-30.
  39. Bahadoran Z, Golzarand M, Mirmiran P, Saadati N, Azizi F. The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study. Journal of Human Nutrition and Dietetics. 2013;26:145-53.
  40. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, Van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism. 2012;303(9):E1158-E65.
  41. Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sciences. 2022;298:120522.
  42. Yang Y, Li X, Liu Z, Ruan X, Wang H, Zhang Q, et al. Moderate Treadmill Exercise Alleviates NAFLD by Regulating the Biogenesis and Autophagy of Lipid Droplet. Nutrients. 2022;14(22):4910.
  43. MacPherson RE, Herbst EA, Reynolds EJ, Vandenboom R, Roy BD, Peters SJ. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2012;302(1):R29-R36.
  44. Amati F, Dubé JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM, et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes. 2011;60(10):2588-97.
  45. Ghafari M, Banitalebi E, Faramarzi M, Mohebi A. Comparison of two intensities of aerobic training (low intensity and high intensity) on expression of perlipin 2 skeletal muscle, serum glucose and insulin levels in streptozotocin-diabetic rats. Armaghane danesh. 2017;22(3):282-94.
  46. Fritsch LJ, McCaulley SJ, Johnson CR, Lawson NJ, Gorres-Martens BK. Exercise prevents whole body type 2 diabetes risk factors better than estradiol replacement in rats. Journal of Applied Physiology. 2021;131(5):1520-31.
  47. Sugimoto T, Uchitomi R, Onishi T, Kamei Y. A combination of exercise and calorie restriction improves the development of obesity-related type 2 diabetes mellitus in KKAy mice. Bioscience, Biotechnology, and Biochemistry. 2023;87(1):108-13.
  48. Louche K, Badin P-M, Montastier E, Laurens C, Bourlier V, de Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. The Journal of Clinical Endocrinology & Metabolism. 2013;98(12):4863-71.
  49. Kim C-H, Kim M-S, Youn J-Y, Park H-S, Song H-S, Song KH, et al. Lipolysis in skeletal muscle is decreased in high-fat-fed rats. Metabolism. 2003;52(12):1586-92.