اثر تمرین مقاومتی بر سطوح سرمی بیومارکرهای منتخب قلبی مردان سالمند دیابتی

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 استادیار گروه تربیت بدنی و علوم ورزشی، واحد بوئین زهرا، دانشگاه آزاد اسلامی، بوئین زهرا، ایران.

2 استاد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت، ایران.

3 استادیار گروه تربیت بدنی و علوم ورزشی، دانشگاه صنعتی امیر کبیر، تهران، ایران.

10.22049/jahssp.2022.27711.1449

چکیده

هدف: سن یک عامل خطر مهم برای دیابت نوع 2 و بیماری­های قلبی عروقی است. هدف از پژوهش حاضر، بررسی تأثیر تمرینات مقاومتی بر سطوح سرمی بیومارکرهای منتخب قلبی از جمله hs-CTnI و GDF-15 در مردان سالمند دیابتی می­باشد. روش شناسی: این تحقیق از نوع تجربی با طرح پیش آزمون - پس آزمون بود؛ بدین منظور 24 نفر به­ صورت انتخابی از بین مردان سالمند دیابتی (سن: 6/6±7/71 سال، وزن: 5/13±1/74 کیلوگرم، شاخص توده بدنی: 4/4±7/26 کیلوگرم بر مجذور متر) به عنوان آزمودنی­های تحقیق انتخاب و به صورت تصادفی در 2 گروه تمرین مقاومتی (12 نفر) و کنترل (12 نفر) تقسیم شدند. پروتکل تمرینی به ­مدت هشت هفته با سه جلسه در هفته، هشت حرکت و هر حرکت با 70 درصد یک تکرار بیشینه برای گروه تمرینی طراحی گردید. گروه کنترل نیز به ­منظور مقایسه با گروه تجربی و بررسی تأثیر زمان هشت هفته­ای خونگیری پیش­آزمون با پس­آزمون، در آسایشگاه سالمندان کهریزک بدون هیچ فعالیت ورزشی تحت نظر بودند. برای اندازه­گیری سطوح سرمی hs-CTnI و GDF-15 به­ ترتیب از روش کِمی لومینسانس و الایزای ساندویچی استفاده گردید. داده­ها با استفاده از نرم افزار SPSS نسخه 24 تحلیل گردید. یافته­ها: سطوح سرمی hs-CTnI پس از هشت هفته تمرینات مقاومتی کاهش معنی­داری داشت (001/0=P). در­ حالی­که سطوح سرمی GDF-15 تغییر معنی­داری نشان نداد (71/0=P). نتیجه­گیری: تمرینات مقاومتی منجر به بروز نتایج متفاوتی از بیومارکرهای قلبی در مردان سالمند دیابتی می­گردد. با این­حال، داده­های پژوهش تأیید می­کند که تمرین مقاومتی ممکن است عوامل خطرزای قلبی را در مردان سالمند دیابتی بهبود بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of resistance training on serum levels of selected cardiac biomarkers of diabetic elderly men

نویسندگان [English]

  • Ebrahim Rangraz 1
  • Bahman Mirzaei 2
  • Hojat Hatami 1
  • Hadi Miri 3
1 Assistant Professor, Department of Physical Education and Sport Sciences, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
2 Professor, Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
3 Assistant Professor, Department of Physical Education and Sport Sciences, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

Aim:   age is an  important risk factor for type 2 diabetes mellitus and cardiovascular diseases. The aim of the present study was to investigate the effect of resistance training on serum levels of selected cardiac biomarkers including hs-CTnI and GDF-15 in elderly diabetic men. Methods: This research was an experimental study with a pretest-posttest design. For this purpose, 24 people were selected from among diabetic elderly men (Age: 71.7±6.6 years, weight: 74.1±13.5 kg, body mass index: 26.7±4.4 kg/m2) as research subjects and randomly divided into 2 groups of resistance training (12 people) and control (12 people). The training protocol was designed for eight weeks with three sessions per week, eight movements and each movement with 70% of one maximum repetition for the training group. The control group was also monitored in Kahrizak nursing home without any exercise to compare with the experimental group and to evaluate the effect of eight-week pre-test and post-test blood sampling time. Chemiluminescence and sandwich ELISA were used to measure serum levels of hs-CTnI and GDF-15, respectively. Data was analyzed using SPSS version 24 software. Results: Serum hs-CTnI levels decreased significantly after eight weeks of resistance training (p=0.001). While, Serum GDF-15 levels did not show significant changes (p=0.71). Conclusions: Resistance training leads to different outcomes of cardiac biomarkers in elderly diabetic men. However, our data confirm that resistance training may improve cardiac risk factors in elderly diabetic men.

کلیدواژه‌ها [English]

  • Resistance Training
  • Troponin
  • Growth Differentiation Factor 15
  • aging
  • Type 2 Diabetes

   

 

This is an open access article distributed under the following Creative Commons license: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

  1. Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes care. 2003;26(8):2433-41.
  2. 2. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Circulation. 2003;107(3):490-7.
  3. Mirzaie M, Darabi S. Population Aging in Iran and Rising Health Care Costs. Iranian Journal of Ageing. 2017;12(2):156-69.
  4. 4. Esteghamati A, Gouya MM, Abbasi M, Delavari A, Alikhani S, Alaedini F, et al. Prevalence of diabetes and impaired fasting glucose in the adult population of Iran: National Survey of Risk Factors for Non-Communicable Diseases of Iran. Diabetes care. 2008;31(1):96-8.
  5. 5. Barakat B, Pezzilli R, Prestinenza P. Elevated serum high-sensitive cardiac troponin T in adolescent runner: exercise or something else? Emergency Care Journal. 2014;10(1).
  6. 6. Abete P, Testa G, Della-Morte D, Gargiulo G, Galizia G, De Santis D, et al. Treatment for chronic heart failure in the elderly: current practice and problems. Heart failure reviews. 2013;18(4):529-51.
  7. 7. Buyukyazi G. The effects of eight-week walking programs of two different intensities on serum lipids and circulating markers of collagen remodelling in humans. Science & Sports. 2008;23(3):162-9.
  8. 8. Van Der Linden N, Klinkenberg LJ, Leenders M, Tieland M, Verdijk LB, Niens M, et al. The effect of exercise training on the course of cardiac troponin T and I levels: three independent training studies. Scientific reports. 2015;5.
  9. 9. Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac Journal of the American College of Cardiology. 2006;48(1):1-11.
  10. 10. Qahramani M, Dolatiari K, Peyman, Roozbehani, Mohammad. The effect of physical activity on cardiac troponins: A systematic review. Applied health studies in exercise physiology. 2021;8( (1): ):12-20.
  11. 11. Eggers KM, Venge P, Lindahl B, Lind L. Cardiac troponin I levels measured with a high-sensitive assay increase over time and are strong predictors of mortality in an elderly population. Journal of the American College of Cardiology. 2013;61(18):1906-13.
  12. 12. De Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. Jama. 2010;304(22):2503-12.
  13. 13. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. Journal of the American College of Cardiology. 2007;50(11):1054-60.
  14. 14. Lok DJ, Klip IT, Lok SI, Badings E, van Wijngaarden J, Voors AA, et al. Incremental prognostic power of novel biomarkers (growth-differentiation factor-15, high-sensitivity C-reactive protein, galectin-3, and high-sensitivity troponin-T) in patients with advanced chronic heart failure. The American journal of cardiology. 2013;112(6):831-7.
  15. 15. Yokoyama-Kobayashi M, Saeki M, Sekine S, Kato S. Human cDNA encoding a novel TGF-β superfamily protein highly expressed in placenta. Journal of Biochemistry. 1997;122(3):622-6.
  16. 16. Barezi S, Fahham N, Seyedabadi M, Ostad S, Ghahremani M. The effect of full length and mature NAG-1 protein overexpression on cytotoxicity of celecoxib, tamoxifen and doxorubicin in HT1080. DARU Journal of Pharmaceutical Sciences. 2010;18(3):163.
  17. 17. Ding Q, Mracek T, Gonzalez-Muniesa P, Kos K, Wilding J, Trayhurn P, et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology. 2009;150(4):1688-96.
  18. 18. Baek SJ, Eling T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacology & therapeutics. 2019;198:46-58.
  19. 19. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circulation Research. 2006;98(3):351-60.
  20. 20. Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circulation research. 2006;98(3):342-50.
  21. 21. Schopfer DW, Ku IA, Regan M, Whooley MA. Growth differentiation factor 15 and cardiovascular events in patients with stable ischemic heart disease (The Heart and Soul Study). American heart journal. 2014;167(2):186-92. e1.
  22. 22. Lind L, Wallentin L, Kempf T, Tapken H, Quint A, Lindahl B, et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. European heart journal. 2009:ehp261.
  23. 23. Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. Journal of diabetes research. 2015;2015.
  24. 24. Bauskin AR, Brown DA, Kuffner T, Johnen H, Luo XW, Hunter M, et al. Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer research. 2006;66(10):4983-6.
  25. 25. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C. Physical activity/exercise and type 2 diabetes. Diabetes care. 2004;27(10):2518-39.
  26. 26. Shiroma EJ, Lee I-M. Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation. 2010;122(7):743-52.
  27. 27. Hofmann M, Halper B, Oesen S, Franzke B, Stuparits P, Tschan H, et al. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Experimental gerontology. 2015;64:35-45.
  28. 28. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116(5):572-84.
  29. 29. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. Jama. 2010;304(20):2253-62.
  30. 30. Shabkhiz F, Khalafi M, Rosenkranz S, Karimi P, Moghadami K. Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: a randomised controlled clinical trial. European Journal of Sport Science. 2021;21(4):636-45.
  31. 31. Khalafi M, Malandish A, Rosenkranz SK, Ravasi AA. Effect of resistance training with and without caloric restriction on visceral fat: A systemic review and meta‐ Obesity Reviews. 2021;22(9):e13275.
  32. 32. Carranza-García L, George K, Serrano-Ostáriz E, Casado-Arroyo R, Caballero-Navarro A, Legaz-Arrese A. Cardiac biomarker response to intermittent exercise bouts. International journal of sports medicine. 2011;32(05):327-31.
  33. 33. Balmain BN, Sabapathy S, Yamada A, Shiino K, Chan J, Haseler LJ, et al. Cardiac perturbations after high-intensity exercise are attenuated in middle-aged compared with young endurance athletes: diminished stress or depleted stimuli? American Journal of Physiology-Heart and Circulatory Physiology. 2021;320(1):H159-H68.
  34. 34. Rangraz E, Mirzaei B, Rahmaninia F. The Effect of Resistance Training on Serum hs-CTnI and NT-proBNP Levels in Elderly Men. Journal of Health Promotion Management. 2019;7(6):17-24.
  35. 35. Galliera E, Lombardi G, Marazzi MG, Grasso D, Vianello E, Pozzoni R, et al. Acute exercise in elite rugby players increases the circulating level of the cardiovascular biomarker GDF-15. Scandinavian journal of clinical and laboratory investigation. 2014;74(6):492-9.
  36. 36. Jerobin J, Ramanjaneya M, Bettahi I, Parammal R, Siveen KS, Alkasem M, et al. Regulation of circulating CTRP-2/CTRP-9 and GDF-8/GDF-15 by intralipids and insulin in healthy control and polycystic ovary syndrome women following chronic exercise training. Lipids in Health and Disease. 2021;20(1):1-11.
  37. 37. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes care. 2002;25(12):2335-41.
  38. 38. Nicklas BJ, Chmelo E, Delbono O, Carr JJ, Lyles MF, Marsh AP. Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese older adults: a randomized controlled trial. The American journal of clinical nutrition. 2015;101(5):991-9.
  39. 39. Passino C, Severino S, Poletti R, Piepoli MF, Mammini C, Clerico A, et al. Aerobic training decreases B-type natriuretic peptide expression and adrenergic activation in patients with heart failure. Journal of the American College of Cardiology. 2006;47(9):1835-9.
  40. 40. Berent R, von Duvillard SP, Crouse SF, Auer J, Green JS, Sinzinger H, et al. Short-term residential cardiac rehabilitation reduces B-type natriuretic peptide. European Journal of Cardiovascular Prevention & Rehabilitation. 2009;16(5):603-8.
  41. 41. Abdi R, Abdi A, Langrodi ZV. The Effect of Four-Week Resistance Exercise along with Milk Consumption on NT-proBNP and Plasma Troponin I. International Journal of Sport and Health Sciences. 2018;12(9):374-8.
  42. 42. Sharifzadeh H, Monazami AA, Azizi M. Effects of Acute Resistance Training on Biochemical Markers of Myocardial Injury (cTnT, cTnI, CK-MB) in Non-Athlete Women. Journal of Kermanshah University of Medical Sciences. 2019;23(2).
  43. 43. Savukoski T, Mehtälä L, Lindahl B, Venge P, Pettersson K. Elevation of cardiac troponins measured after recreational resistance training. Clinical biochemistry. 2015;48(12):803-6.
  44. 44. Hankey J. The effect of prolonged exercise and environmental temperature upon left ventricular function and cardiac biomarker release: Liverpool John Moores University (United Kingdom); 2019.
  45. 45. DOKHT AR, RAVASI AA, AKBARNEJAD A, SOORI R. The Effect of Two Types of Resistance Training (Concentric Failure Set and Configuration Cluster Sets) on Biomarkers Response of Myocardium Injury in Athletes. 2020.
  46. 46. Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu T-T, Yoerger DM, Jassal DS, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114(22):2325-33.
  47. 47. Hirano T, Matsunaga K, Takahashi S, Donishi T, Suga K, Oishi K, et al. A novel role of growth differentiation factor (GDF)-15 in overlap with sedentary lifestyle and cognitive risk in COPD. Journal of clinical medicine. 2020;9(9):2737.
  48. 48. Moghaddasi Y, Ghazalian F, Abediankenari S, Ebrahim K, Abednatanzi H. Effect of Aerobic and Resistance Training on GDF-15 Levels in Patients with Type 1 Diabetes. Journal of Mazandaran University of Medical Sciences. 2020;30(186):123-32.
  49. 49. Drummond LR, Del Carlo RJ, Da Silva KA, Rodrigues AC, Soares PNP, Gomes TNP, et al. Enhanced femoral neck strength in response to weightlifting exercise training in maturing male rats: original research article. International SportMed Journal. 2013;14(3):155-67.
  50. 50. Alves JP, Nunes RB, Stefani GP, Dal Lago P. Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: experimental model of heart failure. PloS one. 2014;9(10):e110317.
  51. 51. Sharma A, Greene S, Vaduganathan M, Fudim M, Ambrosy AP, Sun JL, et al. Growth differentiation factor‐15, treatment with liraglutide, and clinical outcomes among patients with heart failure. ESC heart failure. 2021.
  52. 52. Kleinert M, Clemmensen C, Sjøberg KA, Carl CS, Jeppesen JF, Wojtaszewski JF, et al. Exercise increases circulating GDF15 in humans. Molecular metabolism. 2018;9:187-91.
  53. 53. Kwan G, Balady GJ. Cardiac rehabilitation 2012: advancing the field through emerging science. Circulation. 2012;125(7):e369-e73.