تاثیر مکمل‌دهی کوتاه مدت کافئین بر سیگنال‌های الکتروانسفالوگرافی ورزشکاران طی یک جلسه فعالیت ورزشی وامانده‌ساز

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 کارشناس ارشد فیزیولوژی ورزشی، گروه علوم ورزشی، دانشکدة علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان،تبریز-ایران

2 استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، دانشکدة علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان،تبریز-ایران

3 دانشیار رفتارحرکتی، گروه علوم ورزشی، دانشکدة علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان،تبریز-ایران

10.22049/jahssp.2022.27811.1470

چکیده

هدف: مصرف کافئین عامل تاثیرگذار در  فعالیت­های مغزی و بهبود عملکرد ورزشی می‌باشد. پژوهش حاضر با هدف بررسی آثار مکمل‌دهی کوتاه مدت کافئین بر سیگنال‌های الکتروآنسفالوگرافی ورزشکاران طی یک جلسه فعالیت ورزشی وامانده‌ساز انجام‌گرفت. روش شناسی: این مطالعه از نوع تجربی بوده و جامعه آماری آن را دانشجویان دختر ورزشکار با دامنه سنی 18-24 سال با حداقل دو سال سابقه فعالیت ورزشی تشکیل می­دادند. از این جامعه  20 نفر بصورت داوطلبانه که دارای شرایط لازم برای ورود به این مطالعه بودند به عنوان نمونه انتخاب شدند و بصورت تصادفی در دو گروه 10 نفری گروه تجربی (ورزشکار مصرف کننده مکمل کافئین) و کنترل (ورزشکارمصرف کننده دارونما) قرار گرفتند. و کپسول‌های حاوی کافئین (با دوز 6 میلی گرم بر کیلوگرم وزن بدن) و نشاسته توسط هر یک از آزمودنی‌ها بدون اطلاع از محتوای کپسول و یک ساعت قبل از شروع پروتکل وامانده ساز مصرف گردید. برای هر دو گروه پروتکل ورزشی وامانده‌ساز بروس تا مرز خستگی اجرا شد. همچنین از تمام آزمودنی‌ها اندازه‌گیری امواج مغزی توسط دستگاه الکتروآنسفالوگرافی در سه مرحله ( نیم ساعت قبل از مصرف کافئین و یک ساعت بعد از مصرف کافئین و  بعد از اتمام آزمون وامانده ساز) انجام گرفت. یافته‌ها: نتایج این مطالعه نشان داد که یک جلسه فعالیت ورزشی وامانده‌ساز همراه با مکمل­دهی کوتاه مدت کافئین در ورزشکاران، باعث ایجاد تغییرات معنی‌دار در امواج دلتا در ناحیه پیشانی نیمکره راست و امواج بتا در ناحیه پیشانی نیمکره چپ می گردد (05/0 >P). نتیجه‌گیری: مکمل­دهی کوتاه مدت کافئین قبل از شرکت در یک جلسه فعالیت ورزشی وامانده‌ساز می­تواند موجب بهبود سیگنال­های الکتروآنسفالوگرافی در ورزشکاران شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Short-term Caffeine Supplementation on Electroencephalography Signals During Exhaustion Exercise Session in Athletes

نویسندگان [English]

  • Samira Olfat 1
  • Roghyeh Fakhrpour 2
  • Behrouz Ghorbanzadeh 3
1 MSc in Exercise Physiology, Department of Sport Sciences, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
2 Assistant Professor, Department of Sport Sciences, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
3 Associate Professor, Department of Sport Sciences, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
چکیده [English]

Aim:  The aim of this study was to investigate the effects of short-term caffeine supplementation on athletes' electroencephalographic signals during a strenuous exercise session.  Methods: This quasi-experimental study consisted of a female student-athlete aged 24-28 years with at least two years of experience in sports. From this population, 20 people who voluntarily had the necessary conditions to enter this study were selected as a sample and were randomly divided into two groups of 10: experimental group (athlete consuming caffeine supplement) and control group (athlete taking placebo). And capsules containing caffeine (at a dose of 6 mg / kg body weight) and starch were consumed by each subject without knowing the contents of the capsule and one hour before the start of the exhausting protocol. For both groups, Bruce exhausted exercise protocol was performed to the point of fatigue, which consisted of six to seven three-minute steps with varying inclination and speed of the turntable. Also, all subjects were measured brain waves by electroencephalography in three stages (half an hour before caffeine consumption and one hour after caffeine consumption and after the exhaustion test).  Results: The results of this study showed that a session of strenuous exercise along with short-term caffeine supplementation in athletes causes significant changes in delta waves in the right hemisphere forehead and beta waves in the left hemisphere forehead (P <0.05). Conclusion: Short-term caffeine supplementation before participating in an exhausting exercise activity session can improve electroencephalographic signals in athletes.
 

کلیدواژه‌ها [English]

  • Short-term caffeine supplementation
  • Electroencephalography waves
  • Exhaustive exercise

   

 

This is an open access article distributed under the following Creative Commons license: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

  1. Cook RH, Griffiths MD, Pontes HM. Personality factors in exercise addiction: a pilot study exploring the role of narcissism, extraversion, and agreeableness. International Journal of Mental Health and Addiction. 2020;18(1):89-102.
  2. Weinstock J. A review of exercise as intervention for sedentary hazardous drinking college students: rationale and issues. Journal of American College Health. 2010;58(6):539-44.
  3. Persson J, Welsh KM, Jonides J, Reuter-Lorenz PA. Cognitive fatigue of executive processes: Interaction between interference resolution tasks. Neuropsychologia. 2007;45(7):1571-9.
  4. Dishman RK, Thom NJ, Puetz TW, O'Connor PJ, Clementz BA. Effects of cycling exercise on vigor, fatigue, and electroencephalographic activity among young adults who report persistent fatigue. Psychophysiology. 2010;47(6):1066-74.
  5. Amann M. Significance of Group III and IV muscle afferents for the endurance exercising human. Clinical and Experimental Pharmacology and Physiology. 2012;39(9):831-5.
  6. Sökmen B, Armstrong LE, Kraemer WJ, Casa DJ, Dias JC, Judelson DA, et al. Caffeine use in sports: considerations for the athlete. The Journal of Strength & Conditioning Research. 2008;22(3):978-86.
  7. Wolde T. Effects of caffeine on health and nutrition: A Review. Food Science and Quality Management. 2014;30:59-65.
  8. Poroch-Serițan M, Michitiuc CB, Jarcău M. Studies and research on caffeine content of various products. BRAIN Broad Research in Artificial Intelligence and Neuroscience. 2018;9(1):29-35.
  9. Hogervorst E, Riedel W, Kovacs E, Brouns F, Jolles J. Caffeine improves cognitive performance after strenuous physical exercise. International journal of sports medicine. 1999;20(06):354-61.
  10. Crabbe JB, Dishman RK. Brain electrocortical activity during and after exercise: a quantitative synthesis. Psychophysiology. 2004;41(4):563-74.
  11. Saeed SMU, Anwar SM, Khalid H, Majid M, Bagci U. Electroencephalography based Classification of Long-term Stress using Psychological Labeling. arXiv preprint arXiv:190707671. 2019.
  12. Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports medicine. 2017;47(8):1569-88.
  13. Thompson CJ, Fransen J, Skorski S, Smith MR, Meyer T, Barrett S, et al. Mental fatigue in football: Is it time to shift the goalposts? An evaluation of the current methodology. Sports Medicine. 2019;49(2):177-83.
  14. Hoffmann E. Brain training against stress. 2005.
  15. Ishii A, Karasuyama T, Kikuchi T, Tanaka M, Yamano E, Watanabe Y. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study. PLoS One. 2015;10(3) :e0122455.
  16. Teplan M. Fundamentals of EEG measurement. Measurement science review. 2002;2(2):1-11.
  17. Hoffmann E. Brain Training Against Stress: Theory, Methods and Results from an Outcome Study, version 4.2. October; 2005.
  18. 18. Thatcher R, Palmero-Soler E, North D, Biver C. Intelligence and eeg measures of information flow: efficiency and homeostatic neuroplasticity. Scientific reports. 2016;6(1):1-10.
  19. Huang K-C, Huang T-Y, Chuang C-H, King J-T, Wang Y-K, Lin C-T, et al. An EEG-based fatigue detection and mitigation system. International journal of neural systems. 2016;26(04):1650018.
  20. Ahn S, Nguyen T, Jang H, Kim JG, Jun SC. Exploring neuro-physiological correlates of drivers' mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Frontiers in human neuroscience. 2016;10:219.
  21. Yang Z, Ren H. Feature extraction and simulation of EEG signals during exercise-induced fatigue. IEEE Access. 2019;7:46389-98.
  22. Boitsova YA, Dan’ko S. Effect of caffeine and phenazepam on the quantitative parameters of the EEG and ultraslow electrical processes in the brain. Human Physiology. 2007;33(3):366-9.
  23. Keane MA, James JE. Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted. Human Psychopharmacology: Clinical and Experimental. 2008;23(8):669-80.

24.MPallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Munoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Medicine and science in sports and exercise. 2013;45(11):2184-92.

  1. Demirhan B, Cengiz A, Turkmen M, TEKBAŞ B, Cebi M. Evaluating maximum oxygenuptake of male soccer players with bruce protocol. Sci Move Health. 2014;14:223-9.
  2. Bailey SP, Hall EE, Folger SE, Miller PC. Changes in EEG during graded exercise on a recumbent cycle ergometer. Journal of sports science & medicine. 2008;7(4):505.
  3. Périard JD, De Pauw K, Zanow F, Racinais S. Cerebrocortical activity during self‐paced exercise in temperate, hot and hypoxic conditions. Acta Physiologica. 2018;222(1):e12916.
  4. Maceri RM, Cherup NP, Hanson NJ. EEG Responses to incremental self-paced cycling exercise in young and middle aged adults. International Journal of Exercise Science. 2019;12(3):800-10.
  5. Ludyga S, Gronwald T, Hottenrott K. Effects of high vs. low cadence training on cyclists’ brain cortical activity during exercise. Journal of Science and Medicine in Sport. 2016;19(4):342-7.
  6. Ftaiti F, Kacem A, Jaidane N, Tabka Z, Dogui M. Changes in EEG activity before and after exhaustive exercise in sedentary women in neutral and hot environments. Applied Ergonomics. 2010;41(6):806-11.
  7. Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. The Journal of Strength & Conditioning Research. 2008;22(6):1950-7.
  8. DANIELS F, Fernhall B, LANDERS D, editors. The effect of maximal and submaximal aerobic exercise on temporal eeg alpha activity in runners and bikers. Psychophysiology; 1984: SOC PSYCHOPHYSIOL RES 1010 VERMONT AVE NW SUITE 1100, WASHINGTON, DC 20005.
  9. Schneider S, Brümmer V, Abel T, Askew CD, Strüder HK. Changes in brain cortical activity measured by EEG are related to individual exercise preferences. Physiology & behavior. 2009;98(4):447-52.
  10. Gwin JT, Ferris DP. Beta-and gamma-range human lower limb corticomuscular coherence. Frontiers in human neuroscience. 2012;6:258.
  11. Kubitz KA, Mott AA. EEG power spectral densities during and after cycle ergometer exercise. Research quarterly for exercise and sport. 1996;67(1):91-6.
  12. Kubitz KA, Pothakos K. Does aerobic exercise decrease brain activation? Journal of Sport and Exercise Psychology. 1997;19(3):291-301.
  13. Choktanomsup K, Charoenwat W, Sittiprapaporn P, editors. Changes of EEG power spectrum in moderate running exercises. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); 2017: IEEE.
  14. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. European journal of applied physiology. 2008;102(2):127-32.
  15. Swaab DF. Sexual differentiation of the brain and behavior. Best practice & research clinical endocrinology & metabolism. 2007;21(3):431-44.
  16. 40. Hosseini MA, Alaei H, Nemati Karimoy H, Daei Z. Effect of Electrical Stimulation and Lesion of Nucleus Accumbens on EEG of Intact and Addicted Rats. Journal of Kerman University of Medical Sciences. 2008 Jan 1.
  17. Gutmann B, Mierau A, Hülsdünker T, Hildebrand C, Przyklenk A, Hollmann W, et al. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural plasticity. 2015;2015.
  18. Woo M, Kim S, Kim J, Petruzzello SJ, Hatfield BD. Examining the exercise-affect dose–response relationship: Does duration influence frontal EEG asymmetry? International journal of psychophysiology. 2009;72(2):166-72.
  19. Deslandes A, Veiga H, Cagy M, Piedade R, Pompeu F, Ribeiro P. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system. Brazilian Journal of Medical and Biological Research. 2005;38(7):1077-86.
  20. Barry RJ, Rushby JA, Wallace MJ, Clarke AR, Johnstone SJ, Zlojutro I. Caffeine effects on resting-state arousal. Clinical Neurophysiology. 2005;116(11):2693-700.
  21. Deslandes AC, Veiga H, Cagy M, Piedade R, Pompeu F, Ribeiro P. Effects of caffeine on visual evoked potencial (P300) and neuromotor performance. Arquivos de neuro-psiquiatria. 2004;62(2B):385-90.
  22. Keane MA, James JE, Hogan MJ. Effects of dietary caffeine on topographic EEG after controlling for withdrawal and withdrawal reversal. Neuropsychobiology. 2007;56(4):197-207.
  23. Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, et al. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. International journal of sports physiology and performance. 2007;2(3):250-9.
  24. Hosseini M, SHarifi M, Ataei R, Alaei H. The effect of physical activity on spontaneous electroencephalographic activity in rat. Journal of Kerman University of Medical Sciences. 2006(4).
  25. Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MC. EEG alpha power modulation of fMRI resting-state connectivity. Brain connectivity. 2012;2(5):254-64.
  26. van den Berg B, de Jong M, Woldorff MG, Lorist MM. Caffeine boosts preparatory attention for reward-related stimulus information. bioRxiv. 2019:697177.
  27. Babiloni C, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Buffo P, et al. Resting state cortical rhythms in athletes: a high-resolution EEG study. Brain Research Bulletin. 2010;81(1):149-56.
  28. Narayani U, Sudhan P. Effect of aerobic training on percentage of body total cholesterol and HDL-C among obese Women. 2010.
  29. Boitsova YA, Dan’ko S. Effect of caffeine and phenazepam on the quantitative parameters of the EEG and ultraslow electrical processes in the brain. Human Physiology. 2007;33(3):366-9.
  30. 54. Ghorbani M, Ghazalian F, Ebrahim KH, Abednatanzi H. Neural Response of Cortical Brain During High Intensity Interval Pedaling Induced Fatigue in Women Cyclist. Journal of Paramedical Sciences & Rehabilitation. 2020;9(1):91-9.
  31. Fouladi Dehaghi B, Mohammadi A, Nematpour L. Mental Fatigue Assessment using recording Brain Signals: Electroencephalography. Iranian Journal of Ergonomics. 2019 Sep 10;7(2):45-53.
  32. Deslandes A, Veiga H, Cagy M, Piedade R, Pompeu F, Ribeiro P. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system. Brazilian Journal of Medical and Biological Research. 2005;38:1077-86.
  33. Keane MA, James JE. Effects of dietary caffeine on EEG, performance and mood when rested and sleep restricted. Human Psychopharmacology: Clinical and Experimental. 2008;23(8):669-80.
  34. Gilbert DG, Dibb WD, Plath LC, Hiyane SG. Effects of nicotine and caffeine, separately and in combination, on EEG topography, mood, heart rate, cortisol, and vigilance. Psychophysiology. 2000;37(5):583-95.