اثر مکمل سازی امگا -3 بر سطوح کاسپاز-3 پس از فعالیت مقاومتی حاد در غیرورزشکاران

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 استادیار، گروه تربیت بدنی، دانشگاه آزاد اسلامی، واحد مریوان، مریوان، ایران

2 کارشناسی ارشد، گروه تربیت بدنی، دانشگاه آزاد اسلامی، واحد مریوان، مریوان، ایران

10.22049/jassp.2020.14014

چکیده

هدف: با توجه به پتانسیل­هایی که امگا-3 در حفظ حیات سلول از طریق تعدیل تولید استرس اکسیداتیو و عوامل التهابی دارد به نظر می­رسد که بتواند موجب تعدیل آپوپتوزیس نیز شود. بنابراین هدف از مطالعه حاضر بررسی اثر مکمل امگا-3 بر سطوح کاسپاز-3 ، به عنوان شاخص آپوپتوزیس، در فعالیت حاد مقاومتی مردان غیر ورزشکار بود.روش شناسی: این مطالعه از نوع نیمه تجربی بود. 12مرد 30-18 ساله با میانگین وزن 6/7±69 ، قد 1/4±4/172 و درصد­چربی 34/2±3/18 از بین مردان غیروزشکار، سالم، غیرسیگاری، معمولی، بدون سابقه مصرف مکمل و دارو به صورت تصادفی انتخاب شدند سپس آزمودنی­ها به مدت دو هفته از مصرف غذاهای دارای امگا-3 منع شدند. بعد از این دو هفته در یک جلسه کنترل فعالیت مقاومتی حاد (اجرای 4 ست در 6 ایستگاه:  پرس سینه، پرس پا، پشت پا، سرشانه با هالتر، جلو بازو، زیر بغل با دستگاه) با شدت 80% یک تکرار بیشینه شرکت کردند. سپس به مدت یک هفته به صورت روزانه مکمل امگا-3 (1800 میلی گرم اسید ایکوزاپنتانوئیک  و 900 میلی گرم اسید دوکوزاهگزانوئیک) مصرف کردند. در روز هشتم فعالیت مقاومتی حاد توسط آزمودنی­ها تکرار شد.خونگیری قبل و بلافاصله پس از فعالیت حاد مقاومتی جهت تعیین سطح سرمی کاسپاز-3 انجام شد. داده­ها با استفاده از آزمون آنوا با اندازه­گیری مکرر و آزمون تعقیبی توکی در سطع معناداری(05/0>p) آنالیز شد. یافته ها: کاسپاز-3 بعد از فعالیت حاد مقاومتی افزایش یافت (015/0= p) اما سطوح آن بعد از یک هفته مصرف مکمل امگا-3 و فعالیت حاد افزایش معناداری نداشت (054/0= p). نتیجه گیری: به نظر می رسد هفت روز مکمل دهی امگا 3 می تواند افزایش ناشی از فعالیت مقاومتی حاد در کاسپاز 3 را تعدیل کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Omega-3 Supplementation on Caspase-3 Levels After Acute Resistance Exercise in Non-Athletes

نویسندگان [English]

  • Hassan Faraji 1
  • Ebrahim Mehrani 2
1 Assistance Professor, Department of Physical Education and Sport Sciences, Marivan Branch, Islamic Azad University, Marivan, Iran
2 MSc in Exercise Physiology, Department of Physical Education and Sport Sciences, Marivan branch, Islamic Azad University, Marivan, Iran
چکیده [English]

Aim: Considering the potential of omega-3 in maintaining cell survival through modulating the production of oxidative stress and inflammatory factors, it seems that it can modulate apoptosis. Therefore, the aim of this study was to investigate the effect of omega-3 supplementation on the levels of caspase-3, as apoptosis index, in acute resistance exercise of non-athletes men.
Methods: This study was quasi-experimental. Twelve men 18-30 years with mean weight 69 ± 7.6, height 172.4 ± 4.1 and fat percentage 18.3 ± 2.34 among non-athletes, healthy, non-smoker and normal men with no history of supplementation and medication simple randomly were selected. Then, subjects were restricted for two weeks from foods with omega-3. After this two weeks, the subjects participated in control session resistance exercise with intensity of 80% of 1RM. They consumed omega-3 daily (1800 mg of Eicosapentaenoic acid and 900 mg of Docosahexaenoic acid) for one week. On the eighth day, the subjects again performed acute resistance exercise. Blood samples were taken before and immediately after acute resistance exercise to determine the serum level of Caspase­3. Data were analyzed by repeated measures ANOVA and Tukey post hoc test at the significant level (p <0.05). Results: Caspase-3 increased after acute resistance exercise (p = 0.015) but its levels did not increase significantly after one week of omega-3 supplementation and acute exercise (p = 0.054). Conclusion: It seems that a 7-day omega-3 supplementation could modify the increase caused by acute resistance activity in caspase-3





 

کلیدواژه‌ها [English]

  • Apoptosis
  • Caspase-3
  • Omega-3
  • Resistance Exercise
=
1.            Marzetti E, Privitera G, Simili V, Wohlgemuth SE, Aulisa L, Pahor M, et al. Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. The Scientific World Journal. 2010;10:340-9.
 
2.            Wong R. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87.
 
3.            Zhang Q, Liu J, Chen S, Liu J, Liu L, Liu G, et al. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress. Apoptosis. 2016;21(4):432-42.
 
4.            Rastogi RP, Sinha RP. Apoptosis: molecular mechanisms and pathogenicity. 2010.
 
5.            McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology. 2013;5(4):a008656.
 
6.            Tamar Khani A, Bashiri J. Effectiveness of three months of aerobic training with Origanum Majorana extract supplementation on soleus muscle apoptosis in male rats. Journal of Applied Health Studies in Sport Physiology. 2018;5(1):83-92.
 
7.            Cooper DM. The balance between life and death: defining a role for apoptosis in aging. J Clin Exp Pathol. 2012;4:001.
 
8.            Safarzadeh Gargari S, Matin Homaei H, Azarbayjani MA. Effects of Continuous Exercise Training in Accompany with H2O2 Injection on male rat Cardiac Bax, Bcl-2 level and Bax/BCL-2 Ratio. Journal of Applied Health Studies in Sport Physiology. 2019;5(2):13-9.
 
9.            Rahimi R, Mirzaei B, Rahmani-Nia F, Salehi Z. Effects of creatine monohydrate supplementation on exercise-induced apoptosis in athletes: a randomized, double-blind, and placebo-controlled study. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2015;20(8):733.
 
10.         Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Applied physiology, nutrition, and metabolism. 2011;36(5):608-17.
 
11.         Soleymani S, Tofighi A, Babaei Bonab S. Effects of an exhaustive exercise before and after aerobic training along with dietary spirulina supplementation on oxidative stress in inactive obese men. Journal of Applied Health Studies in Sport Physiology. 2018;5(2):36-44.
 
12.         Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Medicine & Science in Sports & Exercise. 2001;33(3):393-6.
 
13.         Krüger K, Mooren FC. Exercise-induced leukocyte apoptosis. Exercise immunology review. 2014;20.
 
14.         Candow DG, Little JP, Chilibeck PD, Abeysekara S, Zello GA, Kazachkov M, et al. Low-dose creatine combined with protein during resistance training in older men. Medicine & Science in Sports & Exercise. 2008;40(9):1645-52.
 
15.         Marini M, Veicsteinas A. The exercised skeletal muscle: a review. European Journal of Translational Myology. 2010;20(3):105-20.
 
16.         Boroujerdi S, Rahimi R. The apoptotic response to resistance exercise with different intensities in athletes. Medcina dello Sport. 2011;64(1):31-44.
 
17.         Faraji H, Rahimi R, Sheikholeslami-Vatani D, Jafaari A. Apoptosis response to different rest periods after resistance exercise in athletes. -. 2016;69(2):173-83.
 
18.         Sharafi H, Rahimi R. The effect of resistance exercise on p53, caspase-9, and caspase-3 in trained and untrained men. The Journal of Strength & Conditioning Research. 2012;26(4):1142-8.
 
19.         Calder PC. n− 3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American journal of clinical nutrition. 2006;83(6):S1505-19S.
 
20.         Sheikholeslami-Vatani D, Ahmadi S, Faraji H. The Effects of Omega-3 and Branched-Chain Amino Acids Supplementation on Serum Apoptosis Markers Following Acute Resistance Exercise in Old Men. Journal of aging and physical activity. 2018:1-23.
 
21.         Muskiet FA, Fokkema MR, Schaafsma A, Boersma ER, Crawford MA. Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. The Journal of nutrition. 2004;134(1):183-6.
 
22.         Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology & therapeutics. 1999;83(3):217-44.
 
23.         Dyall S, Michael-Titus A. Neurological benefits of omega-3 fatty acids. Neuromolecular medicine. 2008;10(4):219-35.
 
24.         Tapiero H, Ba GN, Couvreur P, Tew K. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomedicine & Pharmacotherapy. 2002;56(5):215-22.
 
25.         Huang J, Frohlich J, Ignaszewski AP. The impact of dietary changes and dietary supplements on lipid profile. Canadian Journal of cardiology. 2011;27(4):488-505.
 
26.         Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. The American journal of clinical nutrition. 2011;93(5):1073-9.
 
27.         Siu PM, Pistilli EE, Butler DC, Alway SE. Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading. American Journal of Physiology-Cell Physiology. 2005;288(2):C338-C49.
 
28.         Mallat Z, Fornes P, Costagliola R, Esposito B, Belmin J, Lecomte D, et al. Age and gender effects on cardiomyocyte apoptosis in the normal human heart. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2001;56(11):M719-M23.
 
29.         Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. Journal of Physical Education, Recreation & Dance. 1993;64(1):88-90.
 
30.         Pollock ML, Jackson AS. Research progress in validation of clinical methods of assessing body composition. Medicine and Science in Sports and Exercise. 1984;16(6):606-15.
 
31.         Jouris KB, McDaniel JL, Weiss EP. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. Journal of sports science & medicine. 2011;10(3):432.
 
32.         Villalba JM, López-Domínguez JA, Chen Y, Khraiwesh H, González-Reyes JA, del Río LF, et al. The influence of dietary fat source on liver and skeletal muscle mitochondrial modifications and lifespan changes in calorie-restricted mice. Biogerontology. 2015;16(5):655-70.
 
33.         Thompson HJ, Zhu Z, Jiang W. Identification of the apoptosis activation cascade induced in mammary carcinomas by energy restriction. Cancer research. 2004;64(4):1541-5.
 
34.         Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany. 2003;91(2):179-94.
 
35.         Zeisel SH. Antioxidants suppress apoptosis. The Journal of nutrition. 2004;134(11):3179S-80S.
 
36.         Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC cell biology. 2013;14(1):32.
 
37.         Koçtürk S, Kayatekin B, Resmi H, Açıkgöz O, Kaynak C, Özer E. The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. European journal of applied physiology. 2008;102(5):515-24.
 
38.         Biral D, Jakubiec-Puka A, Ciechomska I, Sandri M, Rossini K, Carraro U, et al. Loss of dystrophin and some dystrophin-associated proteins with concomitant signs of apoptosis in rat leg muscle overworked in extension. Acta neuropathologica. 2000;100(6):618-26.
 
39.         Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. Journal of applied physiology. 2006;101(5):1442-50.
 
40.         Kerksick CM, Kreider RB, Willoughby DS. Intramuscular adaptations to eccentric exercise and antioxidant supplementation. Amino Acids. 2010;39(1):219-32.
 
41.         Sharafi H, Rahimi R. The effect of resistance exercise on p53, caspase-9, and caspase-3 in trained and untrained men. J Strength Cond Res. 2012;26(4):1142-8.
 
42.         Faraji H, Rahimi R, Sheikholeslami Vatani D, Jafari A. Apoptosis response to different rest periods after resistance exercise in athletes. MEDICINA DELLO SPORT. 2016;69(2):173-83.
 
43.         Shirvani H, Faramarzi M, Aghababa R, Samadi M. The combined effect of low impact aerobic exercise and omega-3 supplementation on serum C-reactive protein level and lipid profile in elderly women. EBNESINA. 2015;17(3):46-53.
 
44.         Bloomer RJ, Larson DE, Fisher-Wellman KH, Galpin AJ, Schilling BK. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids in health and disease. 2009;8(1):36.
 
45.         حجتش, آتشکس, گلیم. تأثیرمکملسازیاسیدچربامگا- 3 برشاخصالتهابی CRP وشاخصهایآسیبسلولیسرمیپسازیکجلسهتمرینمقاومتیدرهندبالیستهایمردجوان.  اولینهمایشملیتربیتبدنیوعلومورزشی: دانشگاهآزاداسلامیواحدنجفآباد; 1391.
 
46.         Malekshahi Moghadam A, Saedi someolia A, jalali M, Sojoudi F. The effects of dietary omega-3 fatty acid supplementation on inflammatory biomarkers in type-2 diabetic patients. Journal of School of Public Health and Institute of Public Health Research. 2012;9(3):73-81.
 
47.         Barbosa DS, Cecchini R, El Kadri MZ, Rodríguez MAM, Burini RC, Dichi I. Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil ω-3 fatty acids. Nutrition. 2003;19(10):837-42.
 
48.         Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687-98.
 
49.         Johnson ML, Lalia AZ, Dasari S, Pallauf M, Fitch M, Hellerstein MK, et al. Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice. Aging cell. 2015;14(5):734-43.
 
50.         Blok W, DESLYPERE JP, Demacker P, van der Ven‐Jongekrijg J, Hectors M, Van der Meer J, et al. Pro‐and anti‐inflammatory cytokines in healthy volunteers fed various doses of fish oil for 1 year. European journal of clinical investigation. 1997;27(12):1003-8.