تأثیر مصرف مقادیر متوسط و بالای کافئین (1,3,7-trimethylxanthine) بر پاسخ شاخص‌های قلبی-عروقی در حالت پایه و متعاقب یک وهله فعالیت هوازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی دانشگاه تبریز. تبریز- ایران.

2 دکتری فیزیولوژی ورزشی، گروه فیزولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی دانشگاه تبریز. تبریز- ایران.

چکیده

کافئین ماده‌ای است که به‌طور طبیعی و گسترده در شکل‌های گوناگون مورد مصرف قرار می‌گیرد. این در حالی است که اخیراّ نتایج برخی داده‌های علمی تأثیرات متناقض ترکیبات کافئینی بر پاسخ شاخص‌های قلبی-عروقی را گزارش کرده‌اند. هدف از پژوهش حاضر تعیین تأثیر مصرف مقادیر مختلف کافئین بر پاسخ برخی شاخص‌های عملکردی قلبی- عروقی در مردان والیبالیست بود. بدین منظور، 30 مرد والیبالیست (میانگین سن 45/1±47/21 سال، درصد چربی 11/347/10 درصد و شاخص تودة بدنی 26/1±15/23 کیلوگرم بر مجذور متر)، در سه گروه (10 نفری)؛ گروه مکمل (6 و 9 میلی‌گرم به ازای هر کیلوگرم از وزن بدن کافئین) و شبه‌دارو (6 میلی‌گرم به ازای هر کیلوگرم از وزن بدن دکستروز) جایگزین شدند. آزمودنی‌ها 45 دقیقه پس از مصرف مکمل در یک پروتکل ورزشی (30 دقیقه دویدن روی نوارگردان با شدت 65% تا 75% ضربان قلب ذخیره) شرکت نمودند. تغییرات ضربان قلب و فشار خون (سیستولی و دیاستولی) طی سه مرحله (قبل و 45 دقیقه بعد از مصرف مکمل‌ و بلافاصله پس از فعالیت هوازی) اندازه‌گیری شد. داده‌های حاصل با استفاده از آزمون‌های تحلیل واریانس مکرر و تعقیبی بونفرونی در سطح معنا‌داری 05/0 بررسی شد. نتایج نشان داد که مصرف مقادیر کافئین در حالت پایه منجر به کاهش ضربان قلب (001/0=P) و افزایش شاخص‌های فشار خون می‌گردد (024/0=P). در حالی‌که، دامنة تغییرات شاخص‌ها پس از فعالیت در تمامی گروه‌ها بدون تفاوت میان گروه‌ها افزایش معنا‌داری داشت (05/0≥P). بنابراین، می‌توان نتیجه گرفت که مصرف مقادیر متوسط و بالای کافئین بر شاخص‌های قلبی- عروقی ناشی از فعالیت تأثیر یکسانی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of medium- and high- dose of caffeine (1,3,7-trimethylxanthine) intake on cardiovascular factors response at baseline and following one-bout aerobic exercise

نویسندگان [English]

  • Ali Zarghami Kamaneh 1
  • Zhale Pashaei 2
1 PhD of Sport Physiology, Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Tabriz University. Tabriz - Iran.
2 PhD of Sport Physiology, Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, tabriz University. Tabriz - Iran.
چکیده [English]

Caffeine is a naturally occurring substance that is widely consumed in a variety of forms. However, today the results of some scientific data on conflicting effects of caffeine compound on cardiovascular factors have been reported. The purpose of the present study was conducted to identify the effect of different doses caffeine intake on some functional cardiovascular indices response in male volleyball players. Thirty male volleyball players (age 21.47±1.45 years, body fat 10.47±3.11 %, and BMI 23.15±1.26 kg.m2) were allocated equally into three groups (n=10): supplement groups (Caffeine intake: 6 or 9 mg.kg-1) and placebo group (Dextrose intake: 6 mg.kg-1). 45-min after the supplementation, subjects were participated in a one-bout exercise protocol (running on a treadmill for 30 minutes with intensity of 65-75% heart rate reserve). Changes in heart rate and blood pressure (systolic and diastolic pressure) along were determined in three phases (before and 45 min after the supplementation and immediately after the aerobic exercises). The data were analyzed by repeated measure ANOVA, bonferroni and independent T test at α≤0.05. The results showed that the different doses of caffeine ingestion had leading to significant decreased heart rate (P=0.001) and increased the blood pressure indices on the basal (P=0.024). However, heart rate and blood pressure index was significantly increased in all groups after exercise without differences between groups (P≤0.05). Therefore, it can be concluded that medium- and high- dose of caffeine intake has the same effect on variation range of cardiovascular indices after exercise.

کلیدواژه‌ها [English]

  • Caffeine
  • Blood Pressure
  • Resistance Exercise

 

1. Davis JK. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009; 39(2):813-832.

2.Heckman MA, Weil JD. Caffeine (1, 3, 7‐trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety and regulatory matters. J food Sci. 2010; 75(3):77-87.

3. Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strenght Cond Res. 2011; 25(1):178-185.

4. Peck JD, Leviton AL, Cowan LD. A review of the epidemiologic evidence concerning the reproductive health effects of caffeine consumption: a 2000–2009 update. Food Chem Tox. 2010; 48(10):2549-76.

5. Fredholm BB. Caffeine and the biological role of adenosine receptors. Cell Death  Diff. 2009; 14(1): 1315-1323.

6. Farag NH, Vincent AS. Caffeine and blood pressure response: sex, age, and hormonal status. J Women’s Helth. 2009; 19(6): 1171-1176.

7. Riksen NP, Smits PA. The cardiovascular effects of methylxanthines. Methylxanthines. 2001; 5: 413-437.

8. Arciero PJ, Ormsbee MJ. Relationship of blood pressure, behavioral mood state, and physical activity following caffeine ingestion in younger and older women. App Physiol Nut Met. 2009; 34(4): 754-762.

9. McClaran SR, Wetter TJ. Low doses of caffeine reduce heart rate during submaximal cycle ergometry. J Int Soc Sports Nut. 2007; 4(1): 1-9

 

10. Woolf  KW, Bidwell KM. Effect of caffeine as an ergogenic aid during anaerobic exercise performance in caffeine naive collegiate football players. J Strength  Cond Res. 2009; 23(5): 1363-1369.

11. Woolf KW, Bidwell KM. The effect of caffeine as an ergogenic aid in anaerobic exercise. Inte J Sport Nut Exer Met. 2008; 18(4): 412-429.

12. Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength  Cond Res. 2008; 3(22): 19-28.

13. O'Connor PJ, Motl RW. Dose-dependent effect of caffeine on reducing leg muscle pain during cycling exercise is unrelated to systolic blood pressure. Pain. 2004; 109(3): 291-298.

14. Gordon NF.  ACSM's guidelines for exercise testing and prescription. 1st ed. Lippincott Williams & Wilkins. 2009; PP: 185-211.

15. Damirchi A, Rahmani-Nia F, Mirzaie B, Hasan-Nia S, Ebrahimi M. Effect of caffeine on metabolic and cardiovascular responses to submaximal exercise in lean and obese men. Bio Human Kinetics. 2009; 1(2): 31–35.

16. Zarghami-Khameneh A, Jafari A. The effect of different doses of caffeine and a single bout of resistant-exhaustive exercise on muscle damage indices in male volleyball players. Feyz. 2014; 18(3):220-228.

17. Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports    Med. 2001; (31):785-807.

18. Hartley TR, Lovallo WR. Cardiovascular effects of caffeine in men and women. The American J Cardio. 2004; 93(8): 1022-1026.

19. Sung BH, Lovallo WR. Effects of caffeine on blood pressure response during exercise in normotensive healthy young men. American J Cardiol. 2006; 65(13): 909-913.

20. Astorino TA, Rohmann RL. Effect of caffeine ingestion on one-repetition maximum muscular strength. Europ J App Physiol. 2008; 102(2):127-132.

21. Goldstein  EP, Jacobs LK. Research article Caffeine enhances upper body strength in resistance-trained women. Sports Med. 2010; 3(2):12-23.

22. Lovallo WR, Wilson MF. Blood pressure response to caffeine shows incomplete tolerance after short-term regular consumption. Hypertension. 2004; 43(4): 760-765.

23. Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physio. 2002; 93(4): 1227-1234.

24. Mousavi A, KoushkiJahromi M, Salasi M, Daryanoush F, Khoshnam A, Nikseresht A. Influence of caffeine consumption on heart rate and blood pressure during rest and ‎exercise. J Jahrom Med Sci. 2011; 9(14). 25-34.

25. Ahrens JN, Crixell SH. The physiological effects of caffeine in women during treadmill walking. J Strength  Cond Res. 2009; 21(1):164-168.

26. Okamoto TJ, Masuhara MK. Upper but not lower limb resistance training increases arterial stiffness in humans. Europ J App Physiol. 2009; 107(2): 127-134.

27. Astorino TA, Terzi MN, Roberson DW, Burnett TR. Effect of caffeine intake on pain perception during high-intensity exercise. Int J Sport Nutr Exerc Metab. 2011; 21(5):27-32.

28. Hendrix CR, Housh TJ, Mielke MN, Zuniga JM, Camic CL, Johnson GO. Acute effects of a caffeine-containing supplement on bench press and leg extension strength and time to exhaustion during cycle ergometry. J Strengt  Cond Res. 2010; 24(3):859-65.

29. Williams AD, Cribb PJ, Cooke MB, Hayes A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength  Cond Res. 2008; 22(2):464-70.

30. Mortensen SP, Nyberg MN. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension. 2008; 53(6): 993-999.

31. Yang JN, Chen JF. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. American J Physiol Heart Circul Physiol. 31; 296(4):1141-1149.

32. Tung C, Kuan C. Effect of adenosine blockade on plasma renin activity and catecholamines. Life Scien. 1993; 17: 21-35.