تاثیر تمرین هوازی بر میزان اضطراب و سطح سروتونین در ناحیه هیپوکامپ و پری فرونتال کورتکس مغز رت های ‏‏مبتلا به ‏آلزایمر

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 کارشناسی ارشد فیزیولوژی ورزشی ، گروه تربیت بدنی و علوم ورزشی ، دانشگاه پیام نور، مرکز کرج، ایران

2 گروه علوم ورزشی، دانشکده علوم انسانی، دانشگاه پیام نور، تهران، ایران

3 گروه تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، تهران، ایران

چکیده

هدف: اثرات مثبت تمرین ورزشی بر خلق و خو و اختلالات رفتاری در بیماران مبتلا به آلزایمر به عنوان یک رویکرد غیردارویی مورد توجه پژوهشگران قرار دارد. هدف از انجام پژوهش حاضر، بررسی تاثیر تمرین هوازی بر میزان اضطراب و سطح سروتونین در ناحیه هیپوکامپ و پری­فرونتال کورتکس رت­های ‏‏مبتلا به ‏آلزایمر بود. روش­ پژوهش: بدین منظور،40 سر موش صحرایی نر نژاد ویستار (8 هفته، 33±237 گرم) به‌طور تصادفی در چهار گروه 10تایی شامل: 1.کنترل، 2.تمرین، 3.آلزایمر و 4.آلزایمر+تمرین قرار گرفتند. دو هفته سازگاری با محیط و 12 هفته تمرین هوازی بر روی نوارگردان داشتند. مدل بیماری آلزایمر در انتهای هفته نهم با تزریق 3 میلی­گرم بر کیلوگرم استرپتوزوسین در ناحیه بطن مغز ایجاد شد. بعد از القای بیماری، به مدت سه هفته تمرین هوازی ادامه یافت. در انتهای دوره تمرینی، تست جعبه تاریک و روشن جهت برآورد سطح اضطراب موش­ها و سپس جداسازی نواحی هیپوکامپ و پری­فرونتال و در نهایت سنجش میزان سروتونین با استفاده از کیت شرکت MyBio و تکنیک الایزا صورت پذیرفت. برای تجزیه ‌و تحلیل داده‌ها، آزمون آنالیز واریانس یک‌راهه به­همراه آزمون تعقیبی توکی (05/0>P) توسط نرم­افزار SPSS انجام شد. یافته­ها: سطح اضطراب رت­های گروه تمرین مبتلا به آلزایمر، نسبت به گروه آلزایمر به صورت معنی­داری کاهش یافت (001/0P=)، بطوری که میانگین زمان و تعداد ورود به بخش روشن نسبت به گروه آلزایمر بیشتر بود. سطح سروتونین در ناحیه پری­فرونتال موش­های گروه تمرین مبتلا به آلزایمر در مقایسه با گروه آلزایمر بطور معنی­داری افزایش یافت (001/0P=)، اما این افزایش در ناحیه هیپوکامپ معنی­دار نبود (149/0P=). در هیچ­یک از متغیرها، اختلاف معنی­داری بین گروه تمرین مبتلا به آلزایمر و تمرین سالم وجود نداشت (05/0P>). نتیجه­گیری: داشتن سبک زندگی فعال و انجام تمرین هوازی، از طریق افزایش ترشح هورمون سروتونین در ناحیه پری­فرونتال کورتکس مغز، باعث کاهش سطح اضطراب موش­های مبتلا به آلزایمر می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of Aerobic Training on Anxiety and Serotonin levels in the hippocampus and prefrontal cortex of rats with Alzheimer's disease

نویسندگان [English]

  • Kosar Shams Barkalaei 1
  • Javad Ramezani 2
  • Ali Barzegari 3
  • Mohammad Hasan Dashti Khavidaki 3
1 Master's Degree in Sports Physiology, Department of Physical Education and Sports Sciences, Payam Noor University, Karaj Center, Iran
2 Department of Sports Sciences, Faculty of Humanities, Payame Noor University, Tehran, Iran
3 Department of Physical Education and Sports Sciences, Payam Noor University, Tehran, Iran
چکیده [English]

The positive effects of exercise training on mood and behavioral disorders in Alzheimer's patients as a non-pharmacological approach are of interest to researchers. The purpose of this study was to investigate the effect of aerobic training on the level of anxiety and serotonin levels in the hippocampus. and the prefrontal cortex of rats suffering from Alzheimer's. Method: 40 male Wistar rats (80-90 days, 237±33 grams) were randomly divided into four groups (N=10): control, training, Alzheimer and Alzheimer+training. They had two weeks of adaptation to the environment and 12 weeks of aerobic training on the treadmill. The Alzheimer's disease model was created at the end of the ninth week by injecting 3 mg/kg of streptozocin into the ventricular region of the brain. After disease induction, aerobic exercise was continued for three weeks. At the end of the training period, the dark and light box test was performed to estimate the anxiety level of the rats, then to separate the hippocampus and prefrontal areas, and finally to measure the amount of serotonin using the MyBio kit and the ELISA technique. To analyze the data, one-way ANOVA with Tukey's post-hoc test (P<0.05) was performed by SPSS software. Results: The anxiety level of the rats in the Alzheimer+training was significantly reduced compared to the Alzheimer's group (P=0.001). The average time and number of entering the light section was higher than the Alzheimer's group. Serotonin levels in the prefrontal region of Alzheimer+training group increased significantly compared to the Alzheimer's group (P=0.001). However, this increase was insignificant in the hippocampus region (P=0.149). In none of the variables, there were no significant difference between Alzheimer+training and the healthy training groups (P>0.05). Conclusion: Having an active lifestyle and performing aerobic exercise, by increasing the secretion of serotonin hormone in the prefrontal cortex of the brain, reduces the  level of anxiety in Rats with Alzheimer's disease.

کلیدواژه‌ها [English]

  • Alzheimer's
  • Anxiety
  • Serotonin
  • Hippocampus
  • Aerobic Training
  1. Davoodabadi A, Naqeibi S, Barzegari A, Dashty khavidaki mh. The Effect Of A Period Of Aerobic Exercises On Of Depression And Changes The Oxidative Stress In The Hippocampus And Prefrontal. Research in Sport Medicine and Technology. 2024;22(27):34-54. [ In Persian]
  2. Ribarič S. Detecting Early Cognitive Decline in Alzheimer's Disease with Brain Synaptic Structural and Functional Evaluation. Biomedicines. 2023;11(2).
  3. Finkel S, Silva J, Cohen G, Miller S, Sartorius N. Behavioral and Psychological Signs and Symptoms of Dementia: A Consensus Statement on Current Knowledge and Implications for Research and Treatment. International Psychogeriatrics. 1996;8:497-500.
  4. Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease crosstalk. Neuroscience & Biobehavioral Reviews. 2016;64:272-87.
  5. Tahiri J, Mian M, Aftan F, Habbal S, Salehi F, Reddy PH, et al. Serotonin in depression and Alzheimer’s disease: Focus on SSRI’s beneficial effects. Ageing Research Reviews. 2024;101:102537. [ In Persian]
  6. Gupta A, Sharma P, Garg V, Singh A, Mondal S. Role of serotonin in seasonal affective disorder. European Review for Medical & Pharmacological Sciences. 2013;17(1).
  7. Batten SR, Bang D, Kopell BH, Davis AN, Heflin M, Fu Q, et al. Dopamine and serotonin in human substantia nigra track social context and value signals during economic exchange. Nature Human Behaviour. 2024;8(4):718-28.
  8. Alizadeh Pahlavani H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behavioural Brain Research. 2024;459:114791. [ In Persian]
  9. Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Curr Biol. 2013;23(17):R764-73.
  10. Cassilhas RC, Tufik S, de Mello MT. Physical exercise, neuroplasticity, spatial learning and memory. Cellular molecular life sciences. 2016;73(5):975-83.
  11. Qomi MS, Kashif M, Salehpour M. The effect of eight weeks resistance and endurance training on some angiogenesis factors of hippocampus tissue in male wistar rats. Journal of Sport Exercise Physiology. 2021;14(2/45):54.[ In Persian]
  12. Antunes H, De Mello M, Santos-Galduróz R, Galduróz J, Lemos VA, Tufik S, et al. Effects of a physical fitness program on memory and blood viscosity in sedentary elderly men. Brazilian Journal of Medical Biological Research. 2015;48:805-12.
  13. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proceedings of the national academy of sciences. 2011;108(7):3017-22.
  14. Arazi H, Dadvand SS, Suzuki K. Effects of exercise training on depression and anxiety with changing neurotransmitters in methamphetamine long term abusers: A narrative review. Biomedical Human Kinetics. 2022;14(1):117-26. [ In Persian]
  15. Wu C, Yang L, Li Y, Dong Y, Yang B, Tucker LD, et al. Effects of exercise training on anxious–depressive-like behavior in Alzheimer rat. Medicine and science in sports and exercise. 2020;52(7):1456.
  16. Azimpour M, Fathi M, Dezfoulian O. Effect of eight weeks of forced physical activity with royal jelly consumption on depression and anxiety levels and antioxidant capacity in trimethyltin-induced Alzheimer's rats. Journal of Applied Exercise Physiology. 2021;17(33):15-34. [ In Persian]
  17. Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, et al. Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression. Cognitive, Affective, & Behavioral Neuroscience. 2019;19:1143-69.
  18. Hosseinzadeh S, Dabidi Roshan V, Mahjoub S, Taghipour Darzi M. The interactive effect of lead acetate and endurance training on the brain-derived neurotrophic factor and malondialdehyde levels in rats cortex. Journal of babol university of medical sciences. 2012;14(2):7-15. [ In Persian]
  19. Amani M, Zolghadrnasab M, Salari A-A. NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiology & Behavior. 2019;202:52-61.[ In Persian]
  20. Shahidi S, Sadeghian R, Komaki A, Asl SS. Intracerebroventricular microinjection of the 5-HT1F receptor agonist LY 344864 inhibits methamphetamine conditioned place preference reinstatement in rats. Pharmacology Biochemistry Behavior. 2018;173:27-35.
  21. Lima KR, Schmidt HL, Daré LR, Soares CB, Lopes LF, Carpes FP, et al. Concurrent exercise does not prevent recognition memory deficits induced by beta-amyloid in rats. Physiology & behavior. 2022;243:113631.
  22. Huang X, Zhao X, Cai Y, Wan Q. The cerebral changes induced by exercise interventions in people with mild cognitive impairment and Alzheimer's disease: A systematic review. Archives of Gerontology and Geriatrics. 2022;98:104547.
  23. Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential effects of extended exercise and memantine treatment on adult neurogenesis in male and female rats. Neuroscience. 2018;390:241-55.
  24. Ströhle A, Graetz B, Scheel M, Wittmann A, Feller C, Heinz A, et al. The acute antipanic and anxiolytic activity of aerobic exercise in patients with panic disorder and healthy control subjects. Journal of psychiatric research. 2009;43(12):1013-7.
  25. Sun L, Lv Y, Tian J, Yu T, Niu F, Zhang X, et al. Regular swimming exercise attenuated neuroma pain in rats: involvement of leptin and adiponectin. The Journal of Pain. 2019;20(9):1112-24.
  26. Bobinski F, Teixeira JM, Sluka KA, Santos ARS. IL-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain. 2018;159(3):437.
  27. Caliskan H, Akat F, Tatar Y, Zaloglu N, Dursun AD, Bastug M, et al. Effects of exercise training on anxiety in diabetic rats. Behavioural brain research. 2019;376:112084.
  28. Zhou Y-S, Meng F-C, Cui Y, Xiong Y-L, Li X-Y, Meng F-B, et al. Regular aerobic exercise attenuates pain and anxiety in mice by restoring serotonin-modulated synaptic plasticity in the anterior cingulate cortex. Medicine and Science in Sports and Exercise. 2022;54(4):566.
  29. Salesi M, Pooranfar S, Jahromi MK, Roozbeh J. The Effect of a selected exercise on, stress, anxiety and depression in kidney transplant patients. Journal of Jahrom University of Medical Sciences. 2014;12(3). [ In Persian]
  30. Gracia-García P, Bueno-Notivol J, Lipnicki DM, de la Cámara C, Lobo A, Santabárbara J. Clinically significant anxiety as a risk factor for Alzheimer's disease: Results from a 10-year follow-up community study. International journal of methods in psychiatric research. 2023;32(3):e1934.
  31. Sinoff G, Werner P. Anxiety disorder and accompanying subjective memory loss in the elderly as a predictor of future cognitive decline. International journal of geriatric psychiatry. 2003;18(10):951-9.
  32. Zhang Y, Liu C, Zhao Y, Zhang X, Li B, Cui R. The effects of calorie restriction in depression and potential mechanisms. Current neuropharmacology. 2015;13(4):536-42.
  33. Kianian T, Kermansaravi F, Saber S, Aghamohamadi F. The impact of aerobic and anaerobic exercises on the level of depression, anxiety, stress and happiness of non-athlete male. Zahedan journal of research in medical sciences. 2018;20(1). [ In Persian]
  34. Von Haaren B, Ottenbacher J, Muenz J, Neumann R, Boes K, Ebner-Priemer U. Does a 20-week aerobic exercise training programme increase our capabilities to buffer real-life stressors? A randomized, controlled trial using ambulatory assessment. European Journal of Applied Physiology. 2016;116:383-94.
  35. Saarto T, Wiffen PJ. Antidepressants for neuropathic pain. Cochrane Database of Systematic Reviews. 2007(4).
  36. Vahedi H, Merat S, Rashidioon A, Ghoddoosi A, Malekzadeh R. The effect of fluoxetine in patients with pain and constipation‐predominant irritable bowel syndrome: a double‐blind randomized‐controlled study. Alimentary pharmacology & therapeutics. 2005;22(5):381-5. [ In Persian]
  37. Xu W, Zhao Y, Huo F, Du J, Tang J. Involvement of ventrolateral orbital cortex 5-HT 1–7 receptors in 5-HT induced depression of spared nerve injury allodynia. Neuroscience. 2013;238:252-7.
  38. Qu C, Huo F, Huang F, Li Y, Tang J, Jia H. The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience. 2008;152(2):487-94.
  39. Willis W, Westlund K. Neuroanatomy of the pain system and of the pathways that modulate pain. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society. 1997;14(1):2.
  40. Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nature neuroscience. 2019;22(10):1659-68.
  41. Izquierdo-Alventosa R, Inglés M, Cortés-Amador S, Gimeno-Mallench L, Chirivella-Garrido J, Kropotov J, et al. Low-intensity physical exercise improves pain catastrophizing and other psychological and physical aspects in women with fibromyalgia: a randomized controlled trial. International journal of environmental research and public health. 2020;17(10):3634.
  42. Verbrugghe J, Agten A, Stevens S, Hansen D, Demoulin C, Eijnde BO, et al. Exercise intensity matters in chronic nonspecific low back pain rehabilitation. Medicine & Science in Sports & Exercise. 2019;51(12):2434-42.
  43. Anderson-Hanley C, Barcelos NM, Zimmerman EA, Gillen RW, Dunnam M, Cohen BD, et al. The aerobic and cognitive exercise study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial. Frontiers in aging neuroscience. 2018;10:76.
  44. Bettio L, Thacker JS, Hutton C, Christie BR. Modulation of synaptic plasticity by exercise. International Review of Neurobiology. 2019;147:295-322.
  45. Koga K, Descalzi G, Chen T, Ko H-G, Lu J, Li S, et al. Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron. 2015;85(2):377-89.
  46. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews Neuroscience. 2013;14(6):401-16.
  47. Van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences. 1999;96(23):13427-31.
  48. Zagaar MA, Dao AT, Alhaider IA, Alkadhi KA. Prevention by regular exercise of acute sleep deprivation-induced impairment of late phase LTP and related signaling molecules in the dentate gyrus. Molecular neurobiology. 2016;53:2900-10.
  49. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nature reviews neuroscience. 2009;10(6):410-22.

 


مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 05 فروردین 1404
  • تاریخ دریافت: 12 آبان 1403
  • تاریخ بازنگری: 02 فروردین 1404
  • تاریخ پذیرش: 02 فروردین 1404