تأثیر یک دوره تمرین ترکیبی همراه با مصرف مکمل اِن-استیل سیستئین بر استرس اکسایشی و آنتی اکسیدان های آنزیمی بیماران مبتلا به انسداد مزمن ریوی

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، مازندران، ایران

2 استاد، فیزیولوژی ورزشی ،دانشکده تربیت‌بدنی و علوم‌ ورزشی، دانشگاه مازندران، ایران

10.22049/jahssp.2025.30152.1704

چکیده

هدف: هدف مطالعۀ حاضر تأثیر تأثیر دوازده هفته تمرین ترکیبی (هوازی، مقاومتی و تای چی) همراه با مصرف مکمل اِن-استیل سیستئین بر استرس اکسایشی و آنتی اکسیدان های آنزیمی بیماران مبتلا به انسداد مزمن ریوی است. روش‌شناسی : در این مطالعه نیمه تجربی، 80 مرد  با میانگین سنی (50/1± 87/46 ( مبتلا به انسداد مزمن ریوی به‌طور تصادفی در 4 گروه تمرینات ترکیبی، گروه تمرینات ترکیبی با مصرف مکمل، گروه مکمل، گروه دارونما به طور مساوی (20 نفر) قرار گرفتند. تمرینات 12 هفته و 6 جلسه در هفته به مدت 60 دقیقه انجام شد. روزانه 1800 میلی‌گرم مکمل اِن-استیل سیستئین در کنار سه وعده غذایی اصلی تجویز شد. مقادیر مالون دی آلدئید(MDA)  و آنزیم‌های کاتالاز(CAT)، گلوتاتیون پراکسیداز (GPX) و سوپراکسید دیسموتاز (SOD) در زمان پیش‌آزمون و پس‌آزمون اندازه‌گیری شدند.  تحلیل داده‌ها با استفاده از آزمون‌های تحلیل کوواریانس و آزمون تی زوجی  در سطح معنی‌داری 05/0P≥ انجام شد. یافته‌ها: پس از 12 هفته مداخله میانگین مقادیر کاتالاز(45/25%، 102/0p=)، سوپراکسید دیسموتاز (43/22%، 01/0p=)و گلوتاتیون پراکسیداز (94/18%، 01/0p=) در گروه مکمل+تمرین افزایش معنادار داشت. در گروه مکمل+تمرین در میزان MDAکاهش معنادار مشاهده شد(10/26%، 002/0p=).  میزانCAT (001/0p=)، SOD (001/0p=)، GPX (001/0p=) در گروه تمرین + مکمل  نسبت به گروه  دارونما افزایش معنادار  داشت و مقدار MDA (001/0p=) در گروه تمرین + مکمل به طور معنی‌داری کمتر از گروه دارونما بود. همچنین مقادیر کاتالاز (01/0p=)، SOD (01/0p=) و GPX (02/0p=) در گروه تمرین نسبت به گروه دارونما افزایش معنادار و میزان MDA (01/0p=) کاهش معنادار داشت.
نتیجه‌گیری: استفاده از پروتکل‌های تمرینی ترکیبی همراه با مصرف مکمل ان-استیل سیستئین  در افزایش کاتالاز، سوپراکسید دیسموتاز و گلوتاتیون پراکسیداز  به عنوان عوامل دفاع آنتی‌اکسیدانی  و کاهش  مالون دی آلدهید  در بیماران مبتلا به بیماری انسداد مزمن ریوی تغییر معناداری ایجاد می‌کند که می‌تواند به ‌عنوان بخشی از مدیریت درمان در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of a combined exercise program with N-acetylcysteine supplementation on oxidative stress and enzymatic antioxidants in patients with chronic obstructive pulmonary disease.

نویسندگان [English]

  • Amirreza Ebrahimi Samarin 1
  • Shadmehr Mirdar 2
1 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
2 Professor, Sport Physiology, Faculty of Physical Education and Sport Sciences, Mazandaran University, Iran
چکیده [English]

Aim The aim of the present study was to evaluate the effect of twelve weeks of combined exercise (aerobic, resistance, and tai chi) along with N-acetylcysteine ​​supplementation on oxidative stress and enzymatic antioxidants in patients with chronic obstructive pulmonary disease. Methods:     In this quasi-experimental study, 80 men with a mean age of (46.87±1.50) suffering from chronic obstructive pulmonary disease were randomly assigned to 4 groups: combined exercise group, combined exercise group with supplement intake, supplement group, and placebo group equally (n=20).The exercise was performed for 12 weeks, 6 sessions per week for 60 minutes.. 1800 mg of N-acetylcysteine supplement was prescribed daily along with three main meals.  Malondialdehyde levels as an indicator of lipid peroxidation and catalase, glutathione peroxidase (GPX) and superoxide dismutase (SOD) enzymes were measured at pre-test and post-test. Data analysis was performed using analysis of covariance and paired t-test at a significance level of P≥0.05. Results:  After 12 weeks of intervention, the mean values ​​of catalase (25.45%, p=0.102), superoxide dismutase (22.43%, p=0.01), and glutathione peroxidase (18.94%, p=0.01) significantly increased in the supplement + exercise group. A significant decrease in MDA was observed in the supplement + exercise group (26.10%, p=0.002). The levels of CAT (p=0.001), SOD (p=0.001), and GPX (p=0.001) in the exercise + supplement group significantly increased compared to the placebo group, and the MDA value (p=0.001) in the exercise + supplement group was significantly lower than the placebo group. Also, the levels of catalase (p=0.01), SOD (p=0.01), and GPX (p=0.02) in the exercise group significantly increased compared to the placebo group, and the level of MDA (p=0.01) significantly decreased. Conclusions:  ombined exercises, N-acetylcysteine, chronic obstructive pulmonary disease, glutathione peroxidase, malondialdehyde, superoxide dismutase .

کلیدواژه‌ها [English]

  • Combined exercises
  • N-acetylcysteine
  • chronic obstructive pulmonary disease
  1. Gale NS, Duckers JM, Enright S, Cockcroft JR, Shale DJ, Bolton CE. Does pulmonary rehabilitation address cardiovascular risk factors in patients with COPD? BMC pulmonary medicine. 2011;11(1):1-7.
  2. Amu A, Golestani Eimani B, Talebi R. Investigation of serum level ficolin-2 protein in patients with chronic obstructive pulmonary disease (COPD). medical journal of mashhad university of medical sciences. 2017;60(2):469-76.}in persian}.
  3. N Hf, A H. Clarifying the concept of palliative care in patients with chronic obstructive pulmonary disease: a concept analysis study. Journal of Torbat Heydariyeh University of Medical Sciences. 2023;10(4):77-90.
  4. Spruit MA, Burtin C, De Boever P, Langer D, Vogiatzis I, Wouters EF, et al. COPD and exercise: does it make a difference? Breathe (Sheffield, England). 2016;12(2):e38-49.
  5. Kilpatrick DC, Swierzko AS, Matsushita M, Domzalska-Popadiuk I, Borkowska-Klos M, Szczapa J, et al. The relationship between FCN2 genotypes and serum ficolin-2 (L-ficolin) protein concentrations from a large cohort of neonates. Human immunology. 2013;74(7):867-71.
  6. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. Journal of inflammation research. 2020:1057-73.
  7. Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020;33:101544.
  8. Klimathianaki M, Vaporidi K, Georgopoulos D. Respiratory muscle dysfunction in COPD: from muscle to cell. Current drug targets. 2011;12(4):478-88.
  9. Corradi M, Rubinstein I, Andreoli R, Manini P, Caglieri A, Poli D, et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2003;167(10):1380-6.
  10. Corradi M, Pignatti P, Manini P, Andreoli R, Goldoni M, Poppa M, et al. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. European Respiratory Journal. 2004;24(6):1011-7.
  11. Antus B, Harnasi G, Drozdovszky O, Barta I. Monitoring oxidative stress during chronic obstructive pulmonary disease exacerbations using malondialdehyde. Respirology. 2014;19(1):74-9.
  12. Caron M-A, Debigaré R, Dekhuijzen PR, Maltais F. Comparative assessment of the quadriceps and the diaphragm in patients with COPD. Journal of applied physiology. 2009;107(3):952-61.
  13. Miklós Z, Horváth I. The Role of Oxidative Stress and Antioxidants in Cardiovascular Comorbidities in COPD. Antioxidants. 2023;12(6):1196.
  14. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology. 2023;97(10):2499-574.
  15. Zinellu E, Zinellu A, Pau MC, Piras B, Fois AG, Mellino S, et al. Glutathione Peroxidase in Stable Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Antioxidants (Basel, Switzerland). 2021;10(11).
  16. Antus B, Drozdovszky O, Barta I. Monitoring catalase activity in COPD exacerbations. European Respiratory Journal.48(suppl 60):PA1064.
  17. Antus B, Paska C, Simon B, Barta I. Monitoring Antioxidant Enzyme Activity during Exacerbations of Chronic Obstructive Pulmonary Disease. Copd. 2018;15(5):496-502.
  18. Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1175-7.
  19. Petersen A, Mittendorfer B, Magkos F, Iversen M, Pedersen B. Physical activity counteracts increased whole‐body protein breakdown in chronic obstructive pulmonary disease patients. Scandinavian journal of medicine & science in sports. 2008;18(5):557-64.
  20. Alcazar J, Losa-Reyna J, Rodriguez-Lopez C, Navarro-Cruz R, Alfaro-Acha A, Ara I, et al. Effects of concurrent exercise training on muscle dysfunction and systemic oxidative stress in older people with COPD. Scandinavian Journal of Medicine & Science in Sports. 2019;29(10):1591-603.
  21. Ngai SP, Jones AY, San Tam WW. Tai Chi for chronic obstructive pulmonary disease (COPD). Cochrane Database of Systematic Reviews. 2016(6).
  22. Wu L-L, Lin Z-K, Weng H-D, Qi Q-F, Lu J, Liu K-X. Effectiveness of meditative movement on COPD: a systematic review and meta-analysis. International journal of chronic obstructive pulmonary disease. 2018:1239-50.
  23. Covey MK, Collins EG, Reynertson SI, Dilling DF. Resistance training as a preconditioning strategy for enhancing aerobic exercise training outcomes in COPD. Respiratory medicine. 2014;108(8):1141-52.
  24. Kawagoshi A, Kiyokawa N, Sugawara K, Takahashi H, Sakata S, Satake M, et al. Effects of low-intensity exercise and home-based pulmonary rehabilitation with pedometer feedback on physical activity in elderly patients with chronic obstructive pulmonary disease. Respiratory medicine. 2015;109(3):364-71.
  25. Duan W, Zeng D, Huang J, Gu J, Li S, Zhou W, et al. Effect of modified Total Body Recumbent Stepper training on exercise capacity and thioredoxin in COPD: a randomized clinical trial. Scientific Reports. 2022;12(1):11139.
  26. Welte T. Optimising treatment for COPD–new strategies for combination therapy. International journal of clinical practice. 2009;63(8):1136-49.
  27. Welte T. Optimising treatment for COPD--new strategies for combination therapy. Int J Clin Pract. 2009;63(8):1136-49.
  28. Decramer M, Rutten-van Mölken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino R, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365(9470):1552-60.
  29. Sanguinetti CM. N-acetylcysteine in COPD: why, how, and when? Multidisciplinary respiratory medicine. 2015;11:8.
  30. Zheng J-P, Wen F-Q, Bai C-X, Wan H-Y, Kang J, Chen P, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. The Lancet Respiratory Medicine. 2014;2(3):187-94.
  31. Liu W, Liu X-M, Huang Y-L, Yu P-M, Zhang X-W, Zhao C, et al. Tai chi as a complementary exercise for pulmonary rehabilitation in chronic obstructive pulmonary disease: a randomised controlled trial. Complementary Therapies in Medicine. 2023;78:102977.
  32. Francisco de Lima F, Marçal Camillo CA, Grigoletto I, Uzeloto J, Marques Vanderlei F, Ramos D, et al. Combining functional exercises with exercise training in COPD: a randomized controlled trial. Physiotherapy theory and practice. 2024;40(5):952-61.
  33. Hirai DM, Jones JH, Zelt JT, da Silva ML, Bentley RF, Edgett BA, et al. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. Journal of applied physiology (Bethesda, Md : 1985). 2017;122(5):1351-61.
  34. Aliniya N, Elmieh A, Fadaei Chafy MR. Interaction effect of combined exercise and supplementation with portulaca oleracea on liver enzymes in obese postmenopausal women with non-alcoholic fatty liver disease. Complementary Medicine Journal. 2020;10(1):68-79.
  35. Cakmak A, Nemutlu E, Yabanoglu-Ciftci S, Baysal I, Kocaaga E, Coplu L, et al. Metabolomic, oxidative, and inflammatory responses to acute exercise in chronic obstructive pulmonary disease. Heart & Lung. 2023;59:52-60.
  36. bostani m, amiri r. The effect of eight weeks of interval training on plasma levels of antioxidant enzymes in inactive elderly men. Journal title. 2022;8(3):0-.}in persian}.
  37. Naghizadeh H, Heydari F. The effect of 12 weeks of HIIT and curcumin consumption on oxidative indices in obese men with type-2 diabetes mellitus. Journal of Sport and Exercise Physiology. 2022;15(4):67-81. }in persian}
  38. Zhang B, Li P, Li J, Liu X, Wu W. Effect of oxidative stress on diaphragm dysfunction and exercise intervention in chronic obstructive pulmonary disease. Frontiers in Physiology. 2021;12:684453.
  39. Rodriguez DA, Kalko S, Puig-Vilanova E, Perez-Olabarría M, Falciani F, Gea J, et al. Muscle and blood redox status after exercise training in severe COPD patients. Free Radical Biology and Medicine. 2012;52(1):88-94.
  40. Agacdiken A, Basyigit I, Ozden M, Yildiz F, Ural D, Maral H, et al. The effects of antioxidants on exercise-induced lipid peroxidation in patients with COPD. Respirology. 2004;9(1):38-42.
  41. Nakatani K, Komatsu M, Kato T, Yamanaka T, Takekura H, Wagatsuma A, et al. Habitual exercise induced resistance to oxidative stress. Free radical research. 2005;39(9):905-11.
  42. Irani M, Afroundeh R, Birar A. Effect of 8 Weeks of Resistance Training Combined With Pomegranate Extract Supplementation on Resting Metabolic Rate, Hypertrophy, and Muscle Strength of Inactive Male College Students. Complementary Medicine Journal. 2022;12(1):56-69.
  43. Kazeminasab F, Behzanejad N, Khalafi M. Impact of exercise training on inflammatory markers in adult and elderly patients with chronic obstructive pulmonary disease: A Systematic review and meta-analysis. Journal of Ilam University of Medical Sciences: Volume. 2024;32(2). }in persian}.
  44. Amini M, Gholami M, Aabed Natanzi H, Shakeri N, Haddad H. Effect of Diaphragmatic Respiratory Training on Some Pulmonary Indexes in Older People With Chronic Obstructive Pulmonary Disease. Salmand: Iranian Journal of Ageing. 2019;14(3):332-41. }in persian}.
  45. Shu C, Feng S, Cui Q, Cheng S, Wang Y. Impact of Tai Chi on CRP, TNF-alpha and IL-6 in inflammation: a systematic review and meta-analysis. Annals of Palliative Medicine. 2021;10(7):7468478-7478.
  46. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane database of systematic reviews. 2015(2).
  47. Babai Kikanlu A. A. . YA. he effect of combined exercises on the level of interleukin-6 and some pulmonary parameters in chemical veterans exposed to mustard gas

Nafs Quarterly. 2021;7(4):24.

  1. Salve VT, Atram JS. N-Acetylcysteine Combined with Home Based Physical Activity: Effect on Health Related Quality of Life in Stable COPD Patients- A Randomised Controlled Trial. Journal of clinical and diagnostic research : JCDR. 2016;10(12):Oc16-oc9.
  2. Jamali F, Ahmadzadeh A, Sahraei Z, Salamzadeh J. Study of the effects of N-acetylcysteine on inflammatory biomarkers and disease activity score in patients with rheumatoid arthritis. Iranian Journal of Allergy, Asthma and Immunology. 2021;20(5):574-83. }in persian}.
  3. Larki RA, Panahi A, Manzouri L, Sedaghattalab M. Effect of n-acetylcysteine on inflammatory and biochemical markers of hemodialysis patients: A randomized controlled trial. Acta Medica Iranica. 2019. }in persian}.
  4. Moitra S. N-acetylcysteine (NAC) in COPD: benefits often lost in trials. QJM: An International Journal of Medicine. 2019;112(5):387-8.
  5. Salve VT, Atram JS. N-acetylcysteine combined with home based physical activity: effect on health related quality of life in stable COPD patients-a randomised controlled trial. Journal of Clinical and Diagnostic Research: JCDR. 2016;10(12):OC16.
  6. Sanguinetti CM. N-acetylcysteine in COPD: why, how, and when? Multidisciplinary respiratory medicine. 2015;11(1):1-11.
  7. Stav D, Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest. 2009;136(2):381-6.
  8. Zinellu E, Zinellu A, Pau MC, Piras B, Fois AG, Mellino S, et al. Glutathione peroxidase in stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. Antioxidants. 2021;10(11):1745.

Journal of Pharmacy and Pharmacology. 2011;5(4):522-6.