ارزیابی اثر تمرین تناوبی شدید (HIIT) و مکمل ملاتونین بر استرس اکسیداتیو در رت‌های با ایسکمی ریپرفیوژن کلیوی

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزش، دانشکده علوم انسانی و تربیتی، دانشگاه آزاد اسلامی، تبریز، ایران

2 گروه علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

3 گروه تربیت بدنی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

4 استادیار گروه فیزیولوژی ورزشی، گروه تربیت‌بدنی و علوم ورزشی، دانشکده علوم اجتماعی، دانشگاه بین المللی امام خمینی(ره) ، قزوین، ایران

5 دانشکده دامپزشکی، دانشگاه آزاد علوم پزشکی، تبریز، ایران

چکیده

هدف: این پژوهش با هدف بررسی تاثیر تمرین تناوبی شدید و مکمل ملاتونین بر مارکرهای استرس اکسیداتیو، کراتینین(Cr)، اوره (BUN) و نیز تغییرات هیستوپاتولوژیک بر عملکرد کلیه در موش­های نر با ایسکمی ریپرفیوژن کلیوی صورت گرفت. روش پژوهش: 30 سر موش صحرایی نر از نژاد ویستار در 5 گروه سالم، ایسکمی IR، IR + تمرین تناوبی شدید، IR + مکمل ملاتونین و IR + تمرین تناوبی شدید + مکمل ملاتونین تقسیم شدند. به غیر از گروه سالم در دیگر گروه­های آزمون، حیوانات مورد ایسکمی-رپرفیوژن قرار گرفتند. پروتکل تمرین تناوبی شدید به مدت 12 هفته  اجرا شد. اندازه­گیری شاخص‌های اکسیداتیو، سوپر اکسید دیسموتاز (SOD)، گلوتاتیون پراکسیداز (GPX) و مالون­ دی ­الدئید (MDA) باروش اسپکتروفتومتری و شاخص‌های BUN و Cr در نمونه سرم پلاسما به روش فتومتریک با کیت پارس آزمون انجام گردید. با توجه به توزیع نرمال داده­ها از آنالیز واریانس یک طرفه و آزمون مقایسه میانگین دوجامعه­ای برای مقایسه بین گروه­ها استفاده شد. یافته‌ها: کاهش عملکرد کلیه پس از IR با افزایش سطح Cr، BUN و MDA و کاهش GPX  و  SOD (05/0>P) مشاهده شد. مصرف ملاتونین باعث کاهش BUN، Cr و MDA و افزایش SOD، GPX (05/0>P) نسبت به گروه ایسکمی شده است. در گروه تمرین تناوبی شدید کاهش BUNو افزایش GPX نسبت به گروه ایسکمی (05/0>P) مشاهده گردید. انجام تمرین تناوبی شدید به همراه مصرف مکمل ملاتونین باعث کاهش سطح BUN و Cr و افزایش SOD و GPX (05/0>P) شده است. نتایج هیستوپاتولوژیک نشان داد که تمرین تناوبی شدید به همراه مصرف ملاتونین کمترین آسیب را به بافت کلیه داشته است. نتیجه‌گیری: به نظر می رسد تمرین تناوبی شدید و مصرف مکمل ملاتونین در حفاظت از بافت کلیه در برابر استرس اکسیداتیو ناشی از ایسکمی رپرفیوژن کلیوی و آسیب آپوپتوز موثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effect of high intensity interval training (HIIT) and melatonin on oxidative stress in rats with renal ischemia-reperfusion

نویسندگان [English]

  • Fariba Pourasghar 1
  • jabbar bashiri 2
  • roghayeh poozesh jadidi 3
  • hasn porrazi 4
  • Alireza Nourazar 5
1 PhD Student of Exercise Physiology, Department of Physical Education and Sport Science, Islamic Azad University of Tabriz, Iran.
2 Tabriz Branch, Islamic Azad University
3 2. Assist Prof, Department of Physical Education, Tabriz branch, Islamic Azad university, Tabriz, Iran
4 Assistant Professor, Department of Physical Education and Sports Science, Faculty of Social Sciences, Imam Khomeini International University, Qazvin, Iran.
5 Department of Veterinary Medicine, Tabriz Azad University of Medical Sciences, Iran.
چکیده [English]

Aim: This research investigated the effect of high intensity interval training (HIIT) and melatonin supplementation on oxidative stress markers, antioxidant enzyme activity, creatinine (Cr) and blood urea nitrogen (BUN) concentrations, as well as histopathological changes to evaluate kidney function in male rats with ischemia renal reperfusion. Methods: 30 male Wistar rats were randomly divided into 5 groups, healthy, Ischemia/Reperfusion (IR), IR + intense interval training, IR + melatonin supplement and IR + high intensive interval training + melatonin supplement. Except for the healthy group, the animals were subjected to ischemia-reperfusion. The HIIT protocol was implemented for 12 weeks (5 days per week). Oxidative indicators of SOD, GPX and MDA were measured by spectrophotometric method and for BUN and Cr indicators; urea was quantitatively detected by Urease-GLDH and creatinine by JAFFE method in plasma serum using photometric method. Because of normal distribution of parameters, the data were analysed by one-way analysis of variance and comparison test of two populations at significance level of (p<0.05). Results: A decrease in kidney function after IR was observed with an increase in Cr, BUN and MDA levels and a decrease in GPX and SOD (P < 0.05). Melatonin consumption decreased BUN, Cr and MDA and increased SOD, GPX (P < 0.05) compared to the ischemic group. In the intense interval training group, BUN decreased and GPX increased compared to the ischemic group (P<0.05). Performing intense interval training along with melatonin supplementation decreased BUN and Cr levels and increased SOD and GPX levels (P < 0.05). The histopathological results showed that intense interval training along with melatonin consumption had the least damage to the kidney tissue. Conclusions: The high-intensity interval training and melatonin supplementation are effective in protecting kidney tissue against apoptotic damage and inflammation caused by renal ischemia.             

کلیدواژه‌ها [English]

  • high intense interval training
  • melatonin
  • ischemia reperfusion
  • oxidative stress
  1. Trof RJ, Di Maggio F, Leemreis J, Groeneveld AJ. Biomarkers of acute renal injury and renal failure. Shock. 2006;26(3):245-53.
  2. Ortega AE, de Azúa López ZR, Pérez RH, Millón CF, Martin AD, Palomo YC, Gallé EL, editors. Kidney failure after heart transplantation. Transplantation Proceedings; 2010: Elsevier.
  3. Kelly K, editor Acute renal failure: much more than a kidney disease. Seminars in nephrology; 2006: Elsevier.
  4. Brouns R, De Deyn P. Neurological complications in renal failure: a review. Clinical neurology and neurosurgery. 2004;107(1):1-16.
  5. Grams ME, Rabb H. The distant organ effects of acute kidney injury. Kidney international. 2012;81(10):942-8.
  6. Masztalerz M, Włodarczyk Z, Czuczejko J, Słupski M, Kedziora J, editors. Superoxide anion as a marker of ischemia-reperfusion injury of the transplanted kidney. Transplantation proceedings; 2006: Elsevier.
  7. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Archives of biochemistry and biophysics. 1991;288(2):481-7.
  8. Szabó C, Zingarelli B, O'Connor M, SALzMAN AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences. 1996;93(5):1753-8.
  9. Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. Journal of Biological Chemistry. 1998;273(23):14085-9.
  10. Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Applied physiology, nutrition, and metabolism. 2011;36(5):608-11.
  11. Xu, Q. F., et al. (2023). "Increased R‐spondin 3 contributes to aerobic exercise‐induced protection against renal vascular endothelial hyperpermeability and acute kidney injury." Acta Physiologica 239(4): e14036.
  12. Yun Y, Duan W, Chen P, Wu H, Shen Z, Qian Z, Wang D, editors. Down-regulation of cyclooxygenase-2 is involved in ischemic postconditioning protection against renal ischemia reperfusion injury in rats. Transplantation proceedings; 2009: Elsevier.
  13. Ahmadiasl N, Banaei S, Alihemmati A. Combination antioxidant effect of erythropoietin and melatonin on renal ischemia-reperfusion injury in rats. Iranian journal of basic medical sciences. 2013;16(12):1209.[In Persian]
  14. Hadj Ayed Tka K, Mahfoudh Boussaid A, Zaouali MA, Kammoun R, Bejaoui M, Ghoul Mazgar S, et al. Melatonin modulates endoplasmic reticulum stress and Akt/GSK3-beta signaling pathway in a rat model of renal warm ischemia reperfusion. Analytical Cellular Pathology. 2015;2015.
  15. Potić M, Ignjatović I, Ničković VP, Živković JB, Krdžić JD, Mitić JS, et al. Two different melatonin treatment regimens prevent an increase in kidney injury marker-1 induced by carbon tetrachloride in rat kidneys. Canadian Journal of Physiology and Pharmacology. 2019;97(5):422-8.
  16. Bermudez-Gonzalez JL, Sanchez-Quintero D, Proaño-Bernal L, Santana-Apreza R, Jimenez-Chavarria MA, Luna-Alvarez-Amezquita JA, et al. Role of the antioxidant activity of melatonin in myocardial ischemia-reperfusion injury. Antioxidants. 2022;11(4):627.
  17. Tan DX, Manchester LC, Liu X, Rosales‐Corral SA, Acuna‐Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. Journal of pineal research. 2013;54(2):127-38.
  18. Sehajpal J, Kaur T, Bhatti R, Singh AP. Role of progesterone in melatonin-mediated protection against acute kidney injury. Journal of Surgical Research. 2014;191(2):441-7.
  19. Lochner A, Huisamen B, Nduhirabandi F. Cardioprotective effect of melatonin against ischaemia/reperfusion damage. Frontiers in Bioscience-Elite. 2013;5(1):305-15.
  20. Eybl V, Kotyzová D, Černá P, Koutenský J. Effect of melatonin, curcumin, quercetin, and resveratrol on acute ferric nitrilotriacetate (Fe-NTA)-induced renal oxidative damage in rats. Human & experimental toxicology. 2008;27(4):347-53.
  21. Aydın G, Ōzçelik N, Cicek E, Soyöz M. Histopathologic changes in liver and renal tissues induced by Ochratoxin A and melatonin in rats. Human & experimental toxicology. 2003;22(7):383-91.
  22. Aouichat S, Navarro-Alarcon M, Alarcón-Guijo P, Salagre D, Ncir M, Zourgui L, Agil A. Melatonin improves endoplasmic reticulum stress-mediated IRE1α pathway in Zücker diabetic fatty rat. Pharmaceuticals. 2021;14(3):232.
  23. Ghiasi S, Bashiri J, Pourrazi H, Jadidi RP. The effect of high-intensity interval training and CoQ10 administration on hepatic CEACAM1 and PDGFA proteins in diet-induced obese rats. Sport Sciences for Health. 2023;19(2):581-8. [In Persian]
  24. Bhalodia Y, Kanzariya N, Patel R, Patel N, Vaghasiya J, Jivani N, Raval H. Renoprotective activity of benincasa cerifera fruit extract on ischemia/reperfusion-induced renal damage in rat. 2009.
  25. Bussmann AR, Marton Filho MA, Módolo MP, Módolo RP, Amado P, Domingues MAC, et al. Effect of allopurinol on the kidney function, histology and injury biomarker (NGAL, IL 18) levels in uninephrectomised rats subjected to ischaemia-reperfusion injury. Acta Cirúrgica Brasileira. 2014;29:515-21.
  26. Li Z, Nickkholgh A, Yi X, Bruns H, Gross ML, Hoffmann K, et al. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF‐kB and apoptosis after experimental kidney transplantation. Journal of Pineal Research. 2009;46(4):365-72.
  27. Gulmen S, Kiris I, Narin C, Ceylan BG, Mermi B, Sutcu R, Meteoglu I. Tezosentan reduces the renal injury induced by abdominal aortic ischemia-reperfusion in rats. Journal of Surgical Research. (1) 1577;2009:e7-e13.
  28. Li Y, Hou D, Chen X, Zhu J, Zhang R, Sun W, et al. Hydralazine protects against renal ischemia-reperfusion injury in rats. European journal of pharmacology. 2019;843:199-209.
  29. Aboutaleb N, Jamali H, Abolhasani M, Toroudi HP. Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of inflammation, oxidative stress and apoptosis. Biomedicine & pharmacotherapy. 2019;110:9-19.
  30. Sahna E, Parlakpinar H, Ozturk F, Cigremis Y, Acet A. The protective effects of physiological and pharmacological concentrations of melatonin on renal ischemia-reperfusion injury in rats. Urological Research. 2003;31(3):188-93.
  31. Col C, Dinler K, Hasdemir O, Buyukasik O, Bugdayci G. Oxidative stress and lipid peroxidation products: effect of pinealectomy or exogenous melatonin injections on biomarkers of tissue damage during acute pancreatitis. Hepatobiliary & pancreatic diseases international: HBPD INT. 2010;9(1):78-82.
  32. Oliveira C, Rodrigues A, Nogueira G, Nascimento M, Punaro G, Higa E. Moderate aerobic exercise on the recovery phase of gentamicin-induced acute kidney injury in rats. Life Sciences. 2017;169:37-42.
  33. Salem HR, Faried MA. Treadmill exercise training ameliorates functional and structural age-associated kidney changes in male albino rats. The Scientific World Journal. 2021;2021.
  34. Couto SM, Machado DI, Conde C, Silva VC, Souza AA, Peres KB, et al. Physical training is a potential modifier of risk for contrast-induced acute kidney injury in diabetes mellitus. BioMed Research International. 2020;2020.
  35. Kafashi, M., Parnow, A., Kafashian, M. R., Knechtle, B. Resistance training enhances renal function in experimental renal ischemia-reperfusion, Sports and Expercise Medicine Switzerland (SEMS) Journal,2021 https://doi.org/10.34045/SEMS/2021/33.
  36. Zhang C, Suo M, Liu L, QI Y, Zhang C, Xie L, Zheng X, Ma C, Li J, Yang J, Bu P. Mellatonin alleviates contrast-Induced Acute Kidney Injury by activation of Sirt3, Oxidative Medicine and cellular Longevity,25;2021:6668887. https://doi.org/10.1155/2021/6668887.