تاثیر تمرین ورزشی بر مقادیر گردش خونی BDNF و IGF-1 در کودکان و نوجوانان: مروری نظام مند با فراتحلیل

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی، دانشگاه کاشان، کاشان، ایران

2 گروه علوم ورزشی، دانشکده علوم انسانی، دانشگاه کاشان، کاشان، ایران

چکیده

هدف. اثر تمرین ورزشی بر این بیوماکرهای محافظت کننده عصبی شامل عامل رشد عصبی مشتق شده از مغز (BDNF) و عامل رشد شبه انسولینی ( IGF-1) در کودکان و نوجوانان به صورت متناقض گزارش شده است. از این‌رو، هدف فراتحلیل حاضر بررسی تاثیر تمرین ورزشی بر مقادیر گردشی خونی BDNF و IGF-1 در کودکان و نوجوانان می باشد.
روش پژوهش. جست‌وجوی جامع در پایگاه های اطلاعاتی PubMed، Web of Science، Scopus و Google Scholar و همچنین پایگاه های ایرانی بدون محدودت زمانی برای شروع تا تاریخ ۱۵ آذر ماه ۱۴۰۲ انجام شد. معیارهای ورود به مطالعه حاضر براساس دستورالعمل PICOS (جمعیت، مداخله، مقایسه، متغیر و نوع مطالعه) شامل : ۱) کودکان و نوجوانان، 2) تمرینات ورزشی منظم با طول مداخله بیش از 2 هفته، 3) مطالعات دارای گروه شاهد یا مقادیر اندازه گیری شده در مرحله پیش آزمون، 4) BDNF، IGF-1 اندازه گیری شده در گردش خون (سرم و پلاسما) و 5) مطالعات تک گروهی (بدون گروه کنترل) و دو گروهی ( دارای گروه کنترل) بودند. برای تعیین اندازه اثر، SMD و فاصله اطمینان ۹۵ درصد (CIs) با استفاده از مدل تصادفی محاسبه شد. یافته ها. در مجموع 21 مطالعه شامل  855 آزمودنی کودک و نوجوان با میانگین سنی 7 تا 17 سال وارد فراتحلیل حاضر شدند. بر اساس نتایج فراتحلیل، تمرین ورزشی منجر به افزایش معنی دار سطوح BDNF با اندازه اثر متوسط می‌شود ] 01/0 = P، (91/0 الی 11/0 : Cl ) 51/0 = SMD [. با این وجود، تمرین ورزشی اثر معنی داری بر سطوح IGF-1 نداشت ] 17/۰ = P، ( 61/۰ الی 11/۰- :Cl ) 25/0 = SMD [. نتیجه گیری. تمرین ورزشی ممکن است به واسطه افزایش BDNF منجر به اثرات مفید در بهبود عملکرد شناختی و همچنین وضعیت متابولیکی کودکان و نوجوانان گردد. با این وجود، تمرین ورزشی اثرات قابل توجهی بر IGF-1 نداشت و لازم است پاسخ این هورمون به فعالیت ورزشی بیشتر بررسی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of exercise training on circulating levels of BDNF and IGF-1 in children and adolescents: a systematic review with meta-analysis

نویسندگان [English]

  • mousa Khalafi 1
  • Maryam Aghaeinejad 2
  • Maryam Saresangi 2
1 University of TehranDepartment of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
2 Department of Sports Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
چکیده [English]

Aim. Brain-derived nerve growth factor (BDNF) and insulin-like growth factor (IGF-1) are known neuroprotective factors that are affected by exercise training. However, the effect of exercise training on these neuroprotective biomarkers in children and adolescents has been reported inconsistently. Therefore, the aim of the meta-analysis is to investigate the effect of exercise training on blood circulating levels of BDNF and IGF-1 in children and adolescents. Method. A comprehensive search was conducted in PubMed, Web of Science, Scopus, and Google Scholar databases, as well as Iranian databases from the inception to December 6, 2023. The inclusion criteria for this study based on the PICOS guidelines (population, intervention, comparison, variable and type of study) include: 1) children and adolescents 2) exercise training with an intervention duration of more than 2 weeks, 3) studies with a control group or measurement values in the pre-test; 4) BDNF, IGF-1 measured in blood circulation (serum and plasma) and 5) single group studies (without control group) and two group studies (with control group). To determine the effect size, SMD and 95% confidence intervals (CIs) were calculated using the random model. Results. A total of 21 studies including 855 children and adolescent individuals with an average age of 7 to 17 years were included in the meta-analysis. Based on meta-analysis results, exercise training leads to a significant increase in BDNF levels with medium effect size [SMD = 0.51, (Cl: 0.91 to 0.11), P=0.01]. Nevertheless, exercise training did not have a significant effect on IGF-1 levels [SMD = 0.25 (Cl: 0.61 to -0.11), P=0.17]. Conclusion. Exercise training may lead to beneficial effects in improving cognitive function and metabolic status of children and adolescents by increasing BDNF. However, exercise training did not have significant effects on IGF-1, and further studies is still needed to determine the role of exercise training.

کلیدواژه‌ها [English]

  • Exercise training
  • IGF-1
  • BDNF
  • Children
  • Adolescents
  1. 김영근, 김현준. Exercise-induced increase of BDNF decreased TG and glucose in obese Adolescents. Journal of Exercise Nutrition & Biochemistry. 2013;17(3):87-93.
  2. Habibian M, Khosravi H, Farzanegi P. The Effects of 8 Weeks of Vitamin C Intake and Regular Aerobic Exercise on Serum Brain-Derived Neurotrophic Factor and Insulin-like Growth Factor-1 Levels in Obese Girls. Iranian Journal of Nutrition Sciences and Food Technology. 2016;11(3):21-30.
  3. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, et al. BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences. 2008;105(7):2711-6.
  4. Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in neurosciences. 2007;30(9):464-72.
  5. Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology & Metabolism. 2014;25(2):89-98.
  6. Matthews VB, Åström M-B, Chan M, Bruce CR, Krabbe K, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409-18.
  7. Jiménez-Maldonado A, de Álvarez-Buylla ER, Montero S, Melnikov V, Castro-Rodríguez E, Gamboa-Domínguez A, et al. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS One. 2014;9(12):e115177.
  8. Meeusen R. Exercise, nutrition and the brain. Sports Medicine. 2014;44:47-56.
  9. Araki S, Yamamoto Y, Dobashi K, Asayama K, Kusuhara K. Decreased plasma levels of brain-derived neurotrophic factor and its relationship with obesity and birth weight in obese Japanese children. Obesity research & clinical practice. 2014;8(1):e63-e9.
  10. Jones JI, Clemmons DR. Insulin-Like Growth Factors and Their Binding Proteins: Biological Actions*. Endocrine Reviews. 1995;16(1):3-34.
  11. Bartke A. Growth hormone and aging: updated review. The World Journal of Men's Health. 2019;37(1):19-30.
  12. Dunger DB, Ahmed ML, Ong KK. Early and late weight gain and the timing of puberty. Molecular and cellular endocrinology. 2006;254:140-5.
  13. Xie S, Jiang R, Xu W, Chen Y, Tang L, Li L, et al. The relationship between serum-free insulin-like growth factor-1 and metabolic syndrome in school adolescents of northeast China. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2019:305-13.
  14. Duran-Ortiz S, Noboa V, Kopchick JJ. Tissue-specific disruption of the growth hormone receptor (GHR) in mice: An update. Growth Hormone & IGF Research. 2020;51:1-5.
  15. Kong AP, Choi K-C, Wong GW, Ko GT, Ho C-S, Chan MH, et al. Serum concentrations of insulin-like growth factor-I, insulin-like growth factor binding protein-3 and cardiovascular risk factors in adolescents. Annals of clinical biochemistry. 2011;48(3):263-9.
  16. Yüksel B, Özbek MN, Mungan NÖ, Darendeliler F, Budan B, Bideci A, et al. Serum IGF-1 and IGFBP-3 levels in healthy children between 0 and 6 years of age. Journal of clinical research in pediatric endocrinology. 2011;3(2):84.
  17. Hoppe C, Rovenna Udam T, Lauritzen L, Mølgaard C, Juul A, Fleischer Michaelsen K. Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. The American journal of clinical nutrition. 2004;80(2):447-52.
  18. Sandhu J, Smith GD, Holly J, Cole TJ, Ben-Shlomo Y. Timing of puberty determines serum insulin-like growth factor-I in late adulthood. The Journal of Clinical Endocrinology & Metabolism. 2006;91(8):3150-7.
  19. Epstein LH, Goldfield GS. Physical activity in the treatment of childhood overweight and obesity: current evidence and research issues. Medicine and science in sports and exercise. 1999;31(11 Suppl):S553-9.
  20. Carson V, Hunter S, Kuzik N, Wiebe SA, Spence JC, Friedman A, et al. Systematic review of physical activity and cognitive development in early childhood. Journal of science and medicine in sport. 2016;19(7):573-8.
  21. Donnelly JE, Hillman CH, Castelli D, Etnier JL, Lee S, Tomporowski P, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Medicine and science in sports and exercise. 2016;48(6):1197.
  22. Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatric exercise science. 2014;26(2):138-46.
  23. Pareja-Galeano H, Brioche T, Sanchis-Gomar F, Montal A, Jovaní C, Martínez-Costa C, et al. Impact of exercise training on neuroplasticity-related growth factors in adolescents. The Journal of Musculoskeletal and Neuronal Interactions. 2013;13(3):368-71.
  24. Dinoff A, Herrmann N, Swardfager W, Lanctot KL. The effect of acute exercise on blood concentrations of brain‐derived neurotrophic factor in healthy adults: a meta‐analysis. European Journal of Neuroscience. 2017;46(1):1635-46.
  25. Dadkhah M, Saadat M, Ghorbanpour AM, Moradikor N. Experimental and clinical evidence of physical exercise on BDNF and cognitive function: a comprehensive review from molecular basis to therapy. Brain Behavior and Immunity Integrative. 2023:100017.
  26. He Y, Wang Q, Wu H, Dong Y, Peng Z, Guo X, et al. The role of IGF-1 in exercise to improve obesity-related cognitive dysfunction. Frontiers in Neuroscience. 2023;17:1229165.
  27. Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Military Medical Research. 2020;7:1-11.
  28. Andrzejewski M, Konefał M, Podgórski T, Pluta B, Chmura P, Chmura J, et al. How training loads in the preparation and competitive period affect the biochemical indicators of training stress in youth soccer players? PeerJ. 2022;10.
  29. Goldfield GS, Kenny GP, Prud'homme D, Holcik M, Alberga AS, Fahnestock M, et al. Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: The hearty randomized controlled trial. Physiol Behav. 2018;191:138-45.
  30. Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med. 2017;22(1):27.
  31. Kang S, Woo J, Yeo NH, Ok D, Yoo J, Shin KO. Low-intensity exercise training maintains adipokines in obese children. Journal of Pediatric Biochemistry. 2010;1(1):17-22.
  32. Kelly L, Holmberg PM, Schroeder ET, Loza A, Lin X, Moody A, et al. Effect of home-based strength training program on IGF-I, IGFBP-1 and IGFBP-3 in obese Latino boys participating in a 16-week randomized controlled trial. J Pediatr Endocrinol Metab. 2019;32(10):1121-9.
  33. Nassis GP, Papantakou K, Skenderi K, Triandafillopoulou M, Kavouras SA, Yannakoulia M, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism. 2005;54(11):1472-9.
  34. Nazari M, Shabani R, Hassanzadeh-Rad A, Esfandiari MA, Dalili S. Effect of concurrent resistance-aerobic training on inflammatory factors and growth hormones in children with type 1 diabetes: a randomized controlled clinical trial. Trials. 2023;24(1):519.
  35. Nemet D, Pontello AM, Rose-Gottron C, Cooper DM. Cytokines and Growth Factors during and after a Wrestling Season in Adolescent Boys. Medicine and Science in Sports and Exercise. 2004;36(5):794-800.
  36. Rodriguez-Ayllon M, Plaza-Florido A, Mendez-Gutierrez A, Altmäe S, Solis-Urra P, Aguilera CM, et al. The effects of a 20-week exercise program on blood-circulating biomarkers related to brain health in overweight or obese children: The ActiveBrains project. Journal of Sport and Health Science. 2023;12(2):175-85.
  37. Roh HT, Cho SY, So WY. Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. Int J Environ Res Public Health. 2020;17(7).
  38. Williams RA, Dring KJ, Morris JG, Sunderland C, Nevill ME, Cooper SB. Effect of two-weeks of school-based sprint training on physical fitness, risk factors for cardiometabolic diseases and cognitive function in adolescent girls: A randomized controlled pilot trial. Frontiers in Sports and Active Living. 2022;4.
  39. Farahani H, elmieh a, Samadi SA, Shabani R. Effect of hydrotherapy on brain-derived neurotrophic factor in children with an Autism Spectrum disorders. Jundishapur Scientific Medical Journal. 2019;18(3):233-43.
  40. bagheri Mh, Bambaeichi E, Esfarjani F, Sattar M. The Effect of 8 Weeks of Water Training on Growth Hormone and Insulin-Like Growth Factor in Children. Journal of Sport Biosciences. 2013;4(14):21-36.
  41. Vakili J, Sari Sarraf V, Khanvari T. Effects of High-intensity Interval Training on Body Composition and Hormone Growth Agents in Overweight Adolescent Boys. Journal of Arak University of Medical Sciences. 2021;24(1):136-49.
  42. Memarmoghaddam M, Taheri Torbati H, Kashi A. The Effect of Exercise Intervention on Cognitive Function and Brain-Derived Neurotrophic Factor in Children with Attention Deficit Hyperactivity Disorder. Journal of Sports and Motor Development and Learning. 2018;10(2):227-42.
  43. Jeon YK, Ha CH. Expression of brain-derived neurotrophic factor, IGF-1 and cortisol elicited by regular aerobic exercise in adolescents. Journal of physical therapy science. 2015;27(3):737-41.
  44. Cho S-Y, So W-Y, Roh H-T. The effects of taekwondo training on peripheral neuroplasticity-related growth factors, cerebral blood flow velocity, and cognitive functions in healthy children: A randomized controlled trial. International journal of environmental research and public health. 2017;14(5):454.
  45. Mohamadi Molod S, Heidarian Pour A, Shokri E. Effect of Submaximal Endurance Training on Serum Concentration of Brain-derived Neurotrophic Factor and Attention Function in Boys with Attention Deficit Hyperactivity Disorder(ADHD). Journal of Arak University of Medical Sciences. 2018;21(2):97-106.
  46. Eliakim A, Brasel JA, Mohan S, Barstow TJ, Berman N, Cooper DM. Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. The Journal of Clinical Endocrinology & Metabolism. 1996;81(11):3986-92.
  47. Eliakim A, Brasel JA, Mohan S, Wong WLT, Cooper DM. Increased physical activity and the growth hormone-IGF-I axis in adolescent males. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1998;275(1):R308-R14.
  48. Rodríguez-Gutiérrez E, Torres-Costoso A, Pascual-Morena C, Pozuelo-Carrascosa DP, Garrido-Miguel M, Martínez-Vizcaíno V. Effects of resistance exercise on neuroprotective factors in middle and late life: a systematic review and meta-analysis. Aging and disease. 2023;14(4):1264.
  49. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PloS one. 2016;11(9):e0163037.
  50. Marinus N, Hansen D, Feys P, Meesen R, Timmermans A, Spildooren J. The impact of different types of exercise training on peripheral blood brain-derived neurotrophic factor concentrations in older adults: a meta-analysis. Sports medicine. 2019;49:1529-46.
  51. Shobeiri P, Karimi A, Momtazmanesh S, Teixeira AL, Teunissen CE, van Wegen EE, et al. Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PloS one. 2022;17(3):e0264557.
  52. Wang YH, Zhou HH, Luo Q, Cui S. The effect of physical exercise on circulating brain‐derived neurotrophic factor in healthy subjects: a meta‐analysis of randomized controlled trials. Brain and behavior. 2022;12(4):e2544.
  53. Ruiz-Gonzalez D, Hernandez-Martinez A, Valenzuela PL, Morales JS, Soriano-Maldonado A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: a systematic review and meta-analysis of randomized controlled trials. Neuroscience & Biobehavioral Reviews. 2021;128:394-405.
  54. Leung WK, Yau S-y, Yang Y, Kwok AW, Wong EM, Cheung JK, et al. Effects of exercise interventions on brain-derived neurotrophic factor levels in overweight and obesity: A systematic review and meta-analysis. Journal of Exercise Science & Fitness. 2024.
  55. Azevedo KPMd, de Oliveira VH, Medeiros GCBSd, Mata ÁNdS, García DÁ, Martínez DG, et al. The effects of exercise on BDNF levels in adolescents: a systematic review with meta-analysis. International Journal of Environmental Research and Public Health. 2020;17(17):6056.
  56. de Menezes-Junior FJ, Jesus ÍC, Brand C, Mota J, Leite N. Physical exercise and brain-derived neurotrophic factor concentration in children and adolescents: a systematic review with meta-analysis. Pediatric exercise science. 2021;34(1):44-53.
  57. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proceedings of the national academy of sciences. 2011;108(7):3017-22.
  58. Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neuroscience Bulletin. 2008;24(4):265.
  59. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. International Journal of Neuropsychopharmacology. 2011;14(3):347-53.
  60. El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). Journal of Neuroscience. 2019;39(13):2369-82.
  61. Deus LA, Corrêa HdL, Neves RVP, Reis AL, Honorato FS, Silva VL, et al. Are resistance training-induced BDNF in hemodialysis patients associated with depressive symptoms, quality of life, antioxidant capacity, and muscle strength? An insight for the muscle–brain–renal axis. International journal of environmental research and public health. 2021;18(21):11299.
  62. Zhou B, Wang Z, Zhu L, Huang G, Li B, Chen C, et al. Effects of different physical activities on brain-derived neurotrophic factor: A systematic review and bayesian network meta-analysis. Frontiers in Aging Neuroscience. 2022;14:981002.
  63. Nofuji Y, Suwa M, Sasaki H, Ichimiya A, Nishichi R, Kumagai S. Different circulating brain-derived neurotrophic factor responses to acute exercise between physically active and sedentary subjects. Journal of sports science & medicine. 2012;11(1):83.
  64. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports medicine. 2010;40:765-801.
  65. Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. Molecular Pathology. 2001;54(5):311.
  66. Amiri N, Fathei M, Mosaferi Ziaaldini M. Effects of resistance training on muscle strength, insulin-like growth factor-1, and insulin-like growth factor–binding protein-3 in healthy elderly subjects: a systematic review and meta-analysis of randomized controlled trials. Hormones. 2021;20:247-57.
  67. Jiang Q, Lou K, Hou L, Lu Y, Sun L, Tan SC, et al. The effect of resistance training on serum insulin-like growth factor 1 (IGF-1): a systematic review and meta-analysis. Complementary therapies in medicine. 2020;50:102360.
  68. Zhou Y, Jia N, Ding M, Yuan K. Effects of exercise on inflammatory factors and IGF system in breast cancer survivors: A meta-analysis. BMC Women's Health. 2022;22(1):507.
  69. Meneses-Echávez JF, Jiménez EG, Río-Valle JS, Correa-Bautista JE, Izquierdo M, Ramírez-Vélez R. The insulin-like growth factor system is modulated by exercise in breast cancer survivors: a systematic review and meta-analysis. BMC cancer. 2016;16:1-10.
  70. Bang P, Brandt J, Degerblad M, Enberg G, Kaijser L, Thoren M, et al. Exercise‐induced changes in insulin‐like growth factors and their low molecular weight binding protein in healthy subjects and patients with growth hormone deficiency. European journal of clinical investigation. 1990;20(3):285-92.
  71. Scheett TP, Mills PJ, Ziegler MG, Stoppani J, Cooper DM. Effect of exercise on cytokines and growth mediators in prepubertal children. Pediatric research. 1999;46(4):429-.