پاسخ هزینه اکسیژن میوکارد، فشارخون و عملکرد اتونوم قلب به فعالیت مقاومتی همراه با ماسک تمرینی و محدودیت جریان خون در مردان جوان ورزشکار

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشگاه گیلان

2 گروه فیزیولوژی ورزش دانشگاه گیلان

چکیده

هدف: فعالیت مقاومتی با شیوه‌های نوین تمرینی پاسخ‌های قلبی و عروقی مختلفی را به همراه دارد. از این رو، هدف اصلی این پژوهش پاسخ هزینه اکسیژن میوکارد، فشار خون و عملکرد اتونوم قلب به فعالیت مقاومتی همراه با ماسک تمرینی و محدودیت جریان خون در مردان جوان ورزشکار بود. روش­ پژوهش: 11 مرد تمرین کرده (با میانگین سنی 70/5 ± 18/29 سال و شاخص توده بدنی80/3 ± 27/25 کیلوگرم بر متر مربع) و با سابقه فعالیت مقاومتی در یکسال گذشته به مدت سه هفته متوالی به صورت تصادفی و متقاطع در سه روش مرسوم (کنترل) (1RM 75%-80%)، فعالیت مقاومتی به همراه محدودیت جریان خون و ماسک هایپوکسی ( 1RM20%-50%) مورد مطالعه قرار گرفتند. فعالیت مقاومتی شامل اجرای 1 نوبت 20 تکراری و 3 نوبت 15 تکراری حرکت بازشدن پا بود. پاسخ­های قلبی_عروقی قبل، بلافاصله و هر 5 دقیقه یک­بار به­مدت 60 دقیقه جمع­آوری شد. داده‌ها با استفاده از روش اندازه‌گیری مکرر تحلیل واریانس با نرم‌افزار SPSS (نسخه 23) در سطح معناداری 05/0p< مورد بررسی قرار گرفت.  یافته­ها: برمبنای نتایج به‌دست آمده هر سه روش تمرینی می­تواند موجب افزایش معنی­دار پاسخ­های هموداینامیک از جمله تغییرپذیری ضربان قلب و فشار خون به­جز فشار خون دیاستولیک پس از فعالیت شود. این افزایش بلافاصله پس از تمرین مشاهده شد، اما تفاوت معنی‌داری بین گروه ها مشاهده نشد. (05/0p<). نتیجه­گیری: نتایج این مطالعه نشان می‌دهد که یک جلسه فعالیت مقاومتی با و بدون محدودیت جریان خون و ماسک هایپوکسی نمی‌تواند باعث پاسخ­های قلبی _ عروقی متفاوتی از یک­دیگر شود. این تحقیق نیز تا حد زیادی اثربخشی این‌گونه از روش­های تمرینی را تأیید می­نماید که تمرینات با شدت کم همراه با محدودیت می­تواند اهدافی که از تمرینات با شدت بالا انتظار می­رود را برآورده کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Cardiovascular responses (HRV, BP, and RPP) following a resistance exercise session with a training mask and blood flow restriction in In young male athletes

نویسندگان [English]

  • Abolfazl Rahmani 1
  • Javad Mehrabani 2
1 MSc of Exercise Physiology, University of Guilan
2 Dep. Exercise Physiology, University of Guilan
چکیده [English]

Aim:      Resistance training with innovative training methods elicits various cardiac and vascular responses. Therefore, the main objective of this research was to investigate the rate pressure product, blood pressure response, and Cardiac Autonomic Function to resistance activity with a training mask and blood flow restriction in young male athletes. Methods: Eleven trained men (average age 29.2 ± 5.7 years and body mass index 25.3 ± 2.7 kg/m²)  with a history of resistance training in the past year participated in a three-week randomized, crossover study using three different methods: traditional (control) resistance training (1RM 75%-80%), resistance training with blood flow restriction, and hypoxic masks (1RM 20%-50%).  The resistance training consisted of one set of 20 repetitions and three sets of 15 repetitions of leg extension movements. Cardiovascular responses were recorded before, immediately after, and every 5 minutes for 60 minutes. The repeated measures analysis of variance method using SPSS software (version 23) was applied to examine the significance level of p<0.05. Results: Based on the results obtained, each of the three training methods can lead to a significant increase in hemodynamic responses, including heart rate variability and blood pressure, except for diastolic blood pressure, following the activity. This increase was observed immediately after the exercise, but no significant difference was observed between the groups. (p< 0.05). Conclusions: The findings of this study indicate that a single bout of resistance exercise, with or without blood flow restriction and a hypoxia mask, does not result in distinct cardiovascular responses compared to each other. This study also significantly confirms the effectiveness of such exercise methods, showing that low-intensity exercises with restrictions can achieve goals expected from high-intensity exercises.
 

کلیدواژه‌ها [English]

  • Blood Flow Restriction
  • Hypoxia
  • Blood Pressure
  • Athlete
  1. 1. Scott BR, Slattery KM, Sculley DV, Dascombe BJ. Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Medicine. 2014;44(8):1037-54.
  2. 2. Brown SP, Clemons JM, He Q, Liu S. Effects of resistance exercise and cycling on recovery blood pressure. Journal of Sports Sciences. 1994;12(5):463-8.
  3. 3. Kenney MJ, Seals DR. Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension. 1993;22(5):653-64.
  4. 4. Malik M, Camm AJ. Heart rate variability. Clinical cardiology. 1990;13(8):570-6.
  5. 5. Ramadan W, Xirouchaki Ce, Mustafa R, Saad A, Benite-Ribeiro Sa. Effect of wearing an elevation training mask on physiological adaptation. Journal of Physical Education & Sport. 2021;21(3).
  6. 6. Campen MJ, Tagaito Y, Jenkins TP, Balbir A, O’Donnell CP. Heart rate variability responses to hypoxic and hypercapnic exposures in different mouse strains. Journal of Applied Physiology. 2005;99(3):807-13.
  7. 7. Abe T, Hinata S, Koizumi K, Sato Y. Day-to-day change in muscle strength and MRI-measured skeletal muscle size during 7 days KAATSU resistance training: A case study. International Journal of KAATSU Training Research. 2005;1(2):71-6.
  8. 8. Abe T, Yasuda T, Midorikawa T, Sato Y, Inoue K, Koizumi K, et al. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research. 2005;1(1):6-12.
  9. 9. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine And Science In Sports And Exercise. 2002;34(2):364-80.
  10. 10. Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training. Sports Medicine. 2010;40(12):1037-53.
  11. 11. Mohebbi H, Rahmaninia F, Vatani DS, Faraji H. Post-exercise responses in blood pressure, heart rate and rate pressure product in endurance and resistance exercise. Medicina Dello Sport. 2010;63(2):209-19.
  12. 12. Okamoto T, Masuhara M, Ikuta K. Relationship between plasma endothelin‐1 concentration and cardiovascular responses during high‐intensity eccentric and concentric exercise. Clinical Physiology And Functional Imaging. 8-43:(1)28;2008.
  13. 13. Arimoto M, Kijima A, Muramatsu S. Cardiorespiratory response to dynamic and static leg press exercise in humans. Journal of Physiological Anthropology And Applied Human Science. 2005;24(4):277-83.
  14. 14. Wong A, Nordvall M, Walters-Edwards M, Lastova K, Francavillo G, Summerfield L, et al. Cardiac autonomic and blood pressure responses to an acute bout of kettlebell exercise. The Journal of Strength & Conditioning Research. 2021;35:S173-S9.
  15. 15. Picón MM, Chulvi IM, Cortell J-MT, Tortosa J, Alkhadar Y, Sanchís J, et al. Acute cardiovascular responses after a single bout of blood flow restriction training. International Journal of Exercise Science. 2018;11(2):20.
  16. 16. Paulo AC, Tricoli V, Queiroz AC, Laurentino G, Forjaz CL. Blood pressure response during resistance training of different work-to-rest ratio. The Journal of Strength & Conditioning Research. 2019;33(2):399-407.
  17. 17. Williams JS, Brown SM, Conlin PR. Blood-pressure measurement. N Engl J Med. 2009;360(5):e6.
  18. 18. Domingos E, Polito MD. Blood pressure response between resistance exercise with and without blood flow restriction: a systematic review and meta-analysis. Life sciences. 2018;209:122-31.
  19. 19. Khazan IZ. The clinical handbook of biofeedback: A step-by-step guide for training and practice with mindfulness: John Wiley & Sons; 2013.
  20. 20. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. Exercise and hypertension. Medicine & Science in Sports & Exercise. 2004;36(3):533-53.
  21. 21. Kingsley JD, Figueroa A. Acute and training effects of resistance exercise on heart rate variability. Clinical Physiology and Functional Imaging. 2016;36(3):179-87.
  22. 22. Iida H, Kurano M, Takano H, Kubota N, Morita T, Meguro K, et al. Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. European Journal of Applied Physiology. 2007;100(3):275-85.
  23. 23. Huang S-C, Wong M-K, Wang J-S. Systemic hypoxia affects cardiac autonomic activity and vascular hemodynamic control modulated by physical stimulation. European Journal of Applied Physiology. 2009;106(1):31-40.
  24. 24. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. The Journal of Clinical Investigation. 1991;87(6):1953-7.
  25. 25. Halliwill JR, Minson CT. Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. Journal of Applied Physiology. 2002;93(3):857-64.
  26. 26. Kleinnibbelink G, Stens NA, Fornasiero A, Speretta GF, Van Dijk AP, Low DA, et al. The acute and chronic effects of high-intensity exercise in hypoxia on blood pressure and post-exercise hypotension: a randomized cross-over trial. Medicine. 2020;99 (29).
  27. 27. Rahmani A, Mirzaei B. The acute effects of resistance exercise with blood flow and respiratory restriction on blood lactate and growth hormone in collegiate wrestlers. Metabolism and Exercise. 2018;8(2):137-50. [Im Persian]
  28. 28. García-Ramos A, Barboza-González P, Ulloa-Díaz D, Rodriguez-Perea A, Martinez-Garcia D, Guede-Rojas F, et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. Journal of Sports Sciences. 2019;37(19):2205-12.
  29. 29. Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine & Science in Sports & Exercise. 2003;35(7):1203-8.
  30. 30. Boroujerdi SS, Rahimi R. Acute GH and IGF-I responses to short vs. long rest period between sets during forced repetitions resistance training system. South African Journal for Research in Sport, Physical Education and Recreation. 2008;30(2):31-8.[In persian]
  31. 31. Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation. Sports Medicine. 2006;36(3):215-38.
  32. 32. Abe T, CF K, Fujita S, Sakamaki M, Sato Y, WF B. Skeletal muscle size and strength are increased following walk training with restricted leg muscle blood flow: implications for training duration and frequency. International Journal of KAATSU Training Research. 2009;5(1):9-15.
  33. 33. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Medicine. 2005;35(4):339-61.
  34. 34. Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. Journal of Applied Physiology. 1990;69(4):1442-50.
  35. 35. Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of Applied Physiology. 2006;101(6):1616-22.
  36. 36. López-Pérez ME, Romero-Arenas S, Colomer-Poveda D, Keller M, Márquez G. Psychophysiological Responses During a cycling test to exhaustion while wearing the elevation training mask. The Journal of Strength & Conditioning Research. 2021.
  37. 37. Loenneke JP, Kim D, Fahs CA, Thiebaud RS, Abe T, Larson RD, et al. The effects of resistance exercise with and without different degrees of blood-flow restriction on perceptual responses. Journal of Sports Sciences. 2015;33(14):1472-9.
  38. 38. MAYO JJ, Kravitz L. A review of the acute cardiovascular responses to resistance exercise of healthy young and older adults. The Journal of Strength & Conditioning Research. 1999;13(1):90-6.
  39. 39. Vieira PJ, Chiappa GR, Umpierre D, Stein R, Ribeiro JP. Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. The Journal of Strength & Conditioning Research. 2013;27(8):2288-94.
  40. 40. Tai YL, Marshall EM, Parks JC, Mayo X, Glasgow A, Kingsley JD. Changes in endothelial function after acute resistance exercise using free weights. Journal of Functional Morphology and Kinesiology. 2018;3(2):32.
  41. 41. Duncan MJ, Birch SL, Oxford SW. The effect of exercise intensity on postresistance exercise hypotension in trained men. The Journal of Strength & Conditioning Research. 2014;28(6):1706-13.
  42. 42. Pinto RR, Karabulut M, Poton R, Polito MD. Acute resistance exercise with blood flow restriction in elderly hypertensive women: haemodynamic, rating of perceived exertion and blood lactate. Clinical Physiology and Functional Imaging. 2018;38(1):17-24.
  43. 43. Drouet PC, Archer DC, Munger CN, Coburn JW, Costa PB, Bottaro M, et al. Hypotensive Effects Following Upper vs. Lower Body Resistance Exercise Between Normotensive and Prehypertensive Men. Journal of Exercise Physiology Online. 2017;20(2).
  44. 44. Rezk C, Marrache R, Tinucci T, Mion D, Forjaz C. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. European Journal of Applied Physiology. 2006;98(1):105-12.
  45. 45. Figueiredo T, Willardson JM, Miranda H, Bentes CM, Reis VM, Simão R. Influence of load intensity on postexercise hypotension and heart rate variability after a strength training session. The Journal of Strength & Conditioning Research. 2015;29(10):2941-8.
  46. 46. Neto GR, Novaes JS, Dias I, Brown A, Vianna J, Cirilo‐Sousa MS. Effects of resistance training with blood flow restriction on haemodynamics: a systematic review. Clinical Physiology and Functional Imaging. 2017;37(6):567-74.
  47. 47. Neto GR, Sousa MS, Costa e Silva GV, Gil AL, Salles BF, Novaes JS. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clinical Physiology and Functional Imaging. 2016;36(1):53-9.
  48. 48. Neto GR, Novaes JS, Salerno VP, Gonçalves MM, Piazera BK, Rodrigues-Rodrigues T, et al. Acute effects of resistance exercise with continuous and intermittent blood flow restriction on hemodynamic measurements and perceived exertion. Perceptual and Motor Skills. 2017;124(1):277-92.
  49. 49. Scott BR, Slattery KM, Sculley DV, Hodson JA, Dascombe BJ. Physical performance during high-intensity resistance exercise in normoxic and hypoxic conditions. The Journal of Strength & Conditioning Research. 2015;29(3):807-15.
  50. 50. Horiuchi M, Ni-I-Nou A, Miyazaki M, Ando D, Koyama K. Impact of resistance exercise under hypoxia on postexercise hemodynamics in healthy young males. International Journal of Hypertension. 2018;2018.