تأثیر تمرین پیلاتس همراه با رزوراترول بر سطوح سرمی سسترین-2، لیپوکالین 2، فشار اکسایشی و سندرم متابولیک در زنان میانسال چاق

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 گروه فیزیولوژی ورزشی، واحد آیت الله آملی،

10.22049/jahssp.2023.28394.1548

چکیده

هدف: چاقی با سندرم متابولیک و بیماری‌های قلبی عروقی مرتبط است. سسترین-2 (SESN2) و لیپوکالین 2 (LCN2) نقش مهمی در چاقی و عوارض آن دارند. فعالیت ورزشی و برخی مواد طبیعی نقش ارزنده ای در درمان و پیشگیری از عوارض چاقی دارند. هدف از این مطالعه بررسی تأثیر تمرینات پیلاتس (PT) و رزوراترول (RSV) بر SESN2، LCN2، HOMA-IR و استرس اکسیداتیو در زنان میانسال چاق بود. روش شناسی: در این مطالعه کارآزمایی بالینی، 40 زن بالغ چاق (سن 70/5 ± 74/42 سال، شاخص توده‌بدنی 37/1 ± 76/31 کیلوگرم بر متر مربع) از شهر تهران انتخاب و به طور تصادفی به چهار گروه دارونما (C)، تمرین پیلاتس (PT)، رزوراترول (RSV) و تمرین پیلاتس-رزوراترول (PTRSV) تقسیم شدند. گروه‌های PT برنامه تمرینی با شدت متوسط را به مدت 8 هفته، 3 بار در هفته انجام دادند. به گروه‌های RSV و PTRSV قرص‌های 500 میلی‌گرمی RSV در صبح داده شد. سطوح سرمی SESN2 و LCN2 توسط کیت الایزا اندازه گیری شد. داده‌ها با استفاده از آزمون t همبسته و آنکوا در سطح معنی‌داری 05/0 p< آزمون شد. یافته‌ها: افزایش SESN2 و کاهش معنی‌دار میزان LCN2 در گروه‌های PT (به ترتیب 034/0P=، 046/0P=)، RSV (به ترتیب 017/0P=، 040/0P=) و PTRSV (به ترتیب 0001/0P=، 0001/0P=) نسبت به گروه C؛ و گروه PTRSV نسبت به گروه‌های PT (به ترتیب 011/0P=، 037/0P=) و RSV (020/0P=، 023/0P=) مشاهده شد. همچنین افزایش معنی‌داری در میزان GPX و کاهش در HOMA-IR و MDA در گروه‌های PT، RSV و PTRSV نسبت به گروه C؛ و گروه PTRSV نسبت به گروه‌های PT و RSV مشاهده شد (05/0 p<).  نتیجه‌گیری: PT و RSV با تاثیر بر SESN2، LCN2، استرس اکسیداتیو و HOMA-IR از اختلالات متابولیکی ناشی از چاقی مقابله کند. بنابراین ترکیب PT و RSV یکی از راه‌کارهای موثر برای جلوگیری از سندرم متابولیک و بیماری‌های قلبی عروقی در زنان چاق می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Pilates Training with Resveratrol on Serum Levels of Sestrin 2, Lipocalin 2, Oxidative Stress and Metabolic Syndrome in Obese Middle-Aged Women

نویسندگان [English]

  • Nina Alipour Ghazichaki 1
  • Ahmad Abdi 1
  • Alireza Barari 2
1 Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2 Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
چکیده [English]

Obesity is associated with metabolic syndrome and cardiovascular diseases. Sestrin-2 (SESN2) and Lipocalin 2 (LCN2) an important role in obesity and its complications. Exercise and some natural substances are known to play a valuable role in the treatment and prevention of obesity complications. The aim of this study was to investigate the effect of Pilates training (PT) and resveratrol (RSV) on SESN2, LCN2, HOMA-IR and oxidative stress in obese middle-aged women. Methods: In this clinical trial study, 40 overweight adult men (age 42.74±5.70 years, Body mass index: BMI 31.76±1.37 kg/m2) were selected from Tehran and randomly allocated into four groups; including Placebo (C), Pilates Training (PT), Resveratrol (RSV) and Pilates Training-Resveratrol (PTRSV). PT groups performed a moderate intensity exercise program for 8 weeks, 3 times/week. The RSV and PTRSV groups were provided with 500 mg RSV tablets daily in the morning. Serum SESN2 and LCN2 levels were measured by ELISA kit. Data were analyzed using an independent t-test and ANCOVA at a significance level of p<0.05. Results: It was observed a significant increase in SESN2 and a decrease in LCN2 in PT groups (P=0.034, P=0.046, respectively), RSV (P=0.017, P=0.040, respectively) and PTRSV (P=0.0001, respectively), P=0.0001) compared to C; and PTRSV compared to PT (P=0.011, P=0.037) and RSV (P=0.020, P=0.023 respectively).  Also, there was a significant increase in the GPX and a decrease in HOMA-IR and MDA in the PT, RSV and PTRSV groups compared to the C group; And PTRSV compared to PT and RSV groups (p<0.05). Conclusion: PT and RSV counteract obesity-induced metabolic disorders by affecting SESN2, LCN2, oxidative stress and HOMA-IR. Therefore, the combination of PT and RSV is one of the effective solutions to prevent metabolic syndrome and cardiovascular diseases in obese women.

کلیدواژه‌ها [English]

  • Exercise Training
  • Resveratrol
  • SEST2
  • Lipocalin 2
  • Obesity
  1. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10.
  2. Park Y-M, Zhang J, Steck SE, Fung TT, Hazlett LJ, Han K, et al. Obesity mediates the association between Mediterranean diet consumption and insulin resistance and inflammation in US adults. The Journal of nutrition. 2017;147(4):563-71.
  3. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Archives of medical science: AMS. 2017;13(4):851.
  4. Wolowczuk I. Obesity–an inflammatory state. Acta Veterinaria Scandinavica. 2015;57(1):K5.
  5. Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell metabolism. 2013;18(6):792-801.
  6. Shin BY, Jin SH, Cho IJ, Ki SH. Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radical Biology and Medicine. 2012;53(4):834-41.
  7. Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park H-W, et al. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell metabolism. 2012;16(3):311-21.
  8. Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu Ja, et al. The functions and roles of sestrins in regulating human diseases. Cellular & Molecular Biology Letters. 2022;27(1):1-24.
  9. Chung HS, Hwang H-J, Hwang SY, Kim NH, Seo JA, Kim SG, et al. Association of serum Sestrin2 level with metabolic risk factors in newly diagnosed drug-naïve type 2 diabetes. Diabetes Research and Clinical Practice. 2018;144:34-41.
  10. Nourbakhsh M, Sharifi R, Ghorbanhosseini SS, Javad A, Ahmadpour F, Razzaghy Azar M, et al. Evaluation of plasma TRB3 and sestrin 2 levels in obese and normal-weight children. Childhood Obesity. 2017;13(5):409-14.
  11. Abella V, Scotece M, Conde J, Gómez R, Lois A, Pino J, et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers. 2015;20(8):565-71.
  12. Rajkovic N, Zamaklar M, Lalic K, Jotic A, Lukic L, Milicic T, et al. Relationship between obesity, adipocytokines and inflammatory markers in type 2 diabetes: relevance for cardiovascular risk prevention. International journal of environmental research and public health. 2014;11(4):4049-65.
  13. Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clinical chemistry. 2007;53(1):34-41.
  14. Zhao M, Gelize E, Moulin A, Azan F, Berdugo M, Guegan J, et al. Effect of intravitreal spironolactone released from PLGA microspheres in diabetic retina of Goto-Kakizaki rat. Investigative Ophthalmology & Visual Science. 2021;62(8):1150.
  15. Ringseis R, Eder K, Mooren FC, Krüger K. Metabolic signals and innate immune activation in obesity and exercise. Exercise immunology review. 2015;21.
  16. Wang T, Niu Y, Liu S, Yuan H, Liu X, Fu L. Exercise improves glucose uptake in murine myotubes through the AMPKα2-mediated induction of Sestrins. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018;1864(10):3368-77.
  17. khatami saravi L, abdi A, barari A. Protective Effect of Aerobic Training along with Garlic on Lipocalin-2 and IL-1β in Obese Women with High Blood Pressure. Iranian Journal of Nutrition Sciences & Food Technology. 2020;15(1):25-34.[In Persian]
  18. Esmaeili B, Abdi A, Mehrabani J. Effect of 8 weeks aerobic training with cinnamon extract supplementation on Lipocalin-2 and IL-1ß in insulin-resistant rats. Metabolism and Exercise. 2018;8(2):151-61. [In Persian]
  19. Aitipour, Afogh, Nazar Ali, Parvaneh, Karimi, Hamid, Rezainejad, Najmeh, Alizadeh, Rostam. Acute effect of resistance activity with and without blood flow restriction on blood pressure of middle-aged women with hypertension and pre-hypertension. Applied health studies in exercise physiology, 2021; 8(2): 119-126. doi: 10.22049/jahssp.2022.27551.1416

  20. Poyafar, Mehdi, Askari, Roya, Maliki, Ali. Comparison of the effect of total body vibration and aerobic exercise intensity with two different intensities on muscle strength and balance in elderly men: a randomized, single-blind clinical trial. Applied health studies in exercise physiology, 2021; 8(1): 1-11. doi: 10.22049/jahssp.2021.27086.1342

  21. Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. British journal of nutrition. 2011;106(3):383-9.
  22. Mętel S, Milert A. Joseph Pilates’ method and possibilities of its application in physiotherapy. Medical Rehabilitation. 2007;11:27-36.
  23. KhajehLandi M, Bolboli L, Bolbol S, Zabihi B. Effect of One Course Pilates Exercise Program on Serum Levels of Resistin, Visfatin, and Chemerin in Overweight Women. Internal Medicine Today. 2020;27(1):98-113. [In Persian]
  24. Amirsasan R, Dolgari R, Vakili J. Effects of Pilates Training and Turmeric Supplementation on Sirtuin 1 Level and Body Composition in Postmenopausal Females with Sedentary Overweight: A Randomized, Double-Blind, Clinical Trial. Zahedan Journal of Research in Medical Sciences. 2019;21(3):e81620.
  25. Taghdir M, Sepandi M. Sample size calculation in medical studies; a brief report. Health Research Journal. 2019;5(1):49-53. [In Persian
  26. Maheri S, Atashak S, Roshdi Bonab R. Comparison of the effect of endurance and strength concurrent training order on the level of the lipocalien-2 and insulin resistance in inactive obese women. Journal of Practical Studies of Biosciences in Sport. 2022;10(22):74-85. [In Persian]
  27. Khairandish r, Ranjbar R, Habibi A. Effects of Pilates Training on Body Composition, Lipid Profile and Some Physical Fitness Parameters in Sedentary Obese Women. Jundishapur Scientific Medical Journal. 2018;17(1):49-61.
  28. Faghihzadeh F, Adibi P, Hekmatdoost A. Effects of dietary resveratrol supplementation on liver enzymes, hs-CRP, and hepatic steatosis in patients with nonalcoholic fatty liver disease. Iranian Journal of Nutrition Sciences & Food Technology. 2014;8(4):40-9. [In Persian]
  29. Wang L, Liu X, Liu S, Niu Y, Fu L. Sestrin2 ablation attenuates the exercise‐induced browning of white adipose tissue in C57BL/6J mice. Acta Physiologica. 2022:e13785.
  30. Yu C, Liu S, Niu Y, Fu L. Exercise protects intestinal epithelial barrier from high fat diet-induced permeabilization through SESN2/AMPKα1/HIF-1α signaling. The Journal of Nutritional Biochemistry. 2022:109059.
  31. Liu S, Yu C, Xie L, Niu Y, Fu L. Aerobic exercise improves mitochondrial function in sarcopenia mice through Sestrin2 in an AMPKα2-dependent manner. The Journals of Gerontology: Series A. 2021;76(7):1161-8.
  32. Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism. 2015;64(6):658-65.
  33. Kim M, Sujkowski A, Namkoong S, Gu B, Cobb T, Kim B, et al. Sestrins are evolutionarily conserved mediators of exercise benefits. Nature communications. 2020;11(1):1-14.
  34. Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X, et al. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Science signaling. 2019;12(585):eaav3249.
  35. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056-60.
  36. Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal muscle. 2011;1(1):1-14.
  37. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell metabolism. 2010;12(6):633-42.
  38. Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxidants & redox signaling. 2011;15(6):1679-90.
  39. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84.
  40. Howell JJ, Ricoult SJ, Ben-Sahra I, Manning BD. A growing role for mTOR in promoting anabolic metabolism. Biochemical Society Transactions. 2013;41(4):906-12.
  41. Eid AA, Lee D-Y, Roman LJ, Khazim K, Gorin Y. Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Molecular and cellular biology. 2013;33(17):3439-60.
  42. Ro S-H, Xue X, Ramakrishnan SK, Cho C-S, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204.
  43. Amini M, Abdi A, Abbassi Daloii A. Synergistic Effects of Aerobic Training and Momordica Charantia L. on Serum Lipocalins in Men with Type 2 Diabetes. Journal of Ardabil University of Medical Sciences. 2020;20(1):7-19. [ In Persian]
  44. Cowland JB, Sørensen OE, Sehested M, Borregaard N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1β, but not by TNF-α. The Journal of Immunology. 2003;171(12):6630-9.
  45. Jin SH, Yang JH, Shin BY, Seo K, Shin SM, Cho IJ, et al. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicology and applied pharmacology. 2013;271(1):95-105.
  46. Seo K, Seo S, Han JY, Ki SH, Shin SM. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicology and applied pharmacology. 2014;280(2):314-22.
  47. Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov A, et al. Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death & Differentiation. 2013;20(4):611-9.
  48. Ramis MR, Esteban S, Miralles A, Tan D-X, Reiter RJ. Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mechanisms of ageing and development. 2015;146:28-41.
  49. Wang Y, He J, Liao M, Hu M, Li W, Ouyang H, et al. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. European Journal of Medicinal Chemistry. 2019;161:48-77.
  50. Mariani S, Di Giorgio MR, Martini P, Persichetti A, Barbaro G, Basciani S, et al. Inverse association of circulating SIRT1 and adiposity: a study on underweight, normal weight, and obese patients. Frontiers in endocrinology. 2018;9:449.
  51. de Ligt M, Timmers S, Schrauwen P. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances? Biochimica et biophysica acta (BBA)-molecular basis of disease. 2015;1852(6):1137-44.
  52. Punduk Z, Hismiogullari AA, Yavuz O, Rahman K. The Dietary Combination of Quercetin and Resveratrol Supplementation May Improve Exercise Tolerance in Young Untrained Males by Modulating IL-6 and NGAL Response. American Journal of Sports Science. 2015;3(2):29-35.
  53. Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. The Journal of physiology. 2014;592(8):1873-86.