Adamska, E., Ostrowska, L., Górska, M., & Krętowski, A. (2014). The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Przeglad gastroenterologiczny, 9(2), 69.
Broom, D. R., Batterham, R. L., King, J. A., & Stensel, D. J. (2009). Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(1), R29-R35.
Bateman, L. A., Slentz, C. A., Willis, L. H., Shields, A. T., Piner, L. W., Bales, C. W., ... & Kraus, W. E. (2011). Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise-STRRIDE-AT/RT). The American journal of cardiology, 108(6), 838-844.
Batacan, R. B., Duncan, M. J., Dalbo, V. J., Tucker, P. S., & Fenning, A. S. (2017). Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med, 51(6), 494-503.
Camacho-Cardenosa, A., Camacho-Cardenosa, M., Burtscher, M., Martínez-Guardado, I., Timon, R., Brazo-Sayavera, J., & Olcina, G. (2018). High-intensity interval training in normobaric hypoxia leads to greater body fat loss in overweight/obese women than high-intensity interval training in normoxia. Frontiers in physiology, 9, 60.
Dehganipour, F., & Salesi, M. (2016). The Effects of Two Different Exercise Training Protocols on Metabolic Syndrome Components in Non-athlete, Middle-Aged Women. Women's Health Bulletin, 3(4).
Eriksson, J., Taimela, S., & Koivisto, V. A. (1997). Exercise and the metabolic syndrome. Diabetologia, 40(2), 125-135.
Greeley, S. J., Martinez, N., & Campbell, B. I. (2013). The impact of high-intensity interval training on metabolic syndrome. Strength & Conditioning Journal, 35(2), 63-65.
Georg Jensen, M., Pedersen, C., Kristensen, M., Frost, G., & Astrup, A. (2013). efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: evidence from animal and human studies. Obesity reviews, 14(2), 129-144.
Gillen, J. B., Little, J. P., Punthakee, Z., Tarnopolsky, M. A., Riddell, M. C., & Gibala, M. J. (2012). Acute high‐intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 14(6), 575-577.
Gill, J. M., Caslake, M. J., McAllister, C., Tsofliou, F., Ferrell, W. R., Packard, C. J., & Malkova, D. (2003). Effects of short-term detraining on postprandial metabolism, endothelial function, and inflammation in endurance-trained men: dissociation between changes in triglyceride metabolism and endothelial function. The Journal of Clinical Endocrinology & Metabolism, 88(9), 4328-4335.
Houghton, D., Wilcox, M. D., Chater, P. I., Brownlee, I. A., Seal, C. J., & Pearson, J. P. (2015). Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food hydrocolloids, 49, 18-24.
Hallworth, J. R. (2016). The influence of exercise intensity on appetite regulating hormones GLP-1 and PYY in active healthy adults (Doctoral dissertation, Lethbridge, Alta: University of Lethbridge, Dept. of Kinesiology and Physical Education).
Hoseini, R., Damirchi, A., & Babaei, P. (2017). Vitamin D increases PPARγ expression and promotes beneficial effects of physical activity in metabolic syndrome. Nutrition, 36, 54-59.
Hossein, K. J., Malihe, H., Zahra, K. J., Zahra, K. K., HamidReza, D., & Maryam, M. (2015). Investigation of Orchid root aqueous extract treatment on hormone cholecystokinin serum concentration and body weight in male rats.
Jackson, A. S., & Pollock, M. L. (1976). Factor analysis and multivariate scaling of anthropometric variables for the assessment of body composition. Medicine and science in sports, 8(3), 196-203.
Jones, T. E., Basilio, J. L., Brophy, P. M., McCammon, M. R., & Hickner, R. C. (2009). Long‐term exercise training in overweight adolescents improves plasma peptide YY and resistin. Obesity, 17(6), 1189-1195
Kumar, S. A., & Brown, L. (2013). Seaweeds as potential therapeutic interventions for the metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 14(3), 299-308.
Kaminsky, L. A., & Whaley, M. H. (1998). Evaluation of a new standardized ramp protocol: the BSU/Bruce Ramp protocol. Journal of Cardiopulmonary Rehabilitation and Prevention, 18(6), 438-444.
Kiwata, J. L., Dorff, T. B., Schroeder, E. T., Gross, M. E., & Dieli-Conwright, C. M. (2016). A review of clinical effects associated with metabolic syndrome and exercise in prostate cancer patients. Prostate cancer and prostatic diseases, 19(4), 323.
Martins, C., Aschehoug, I., Ludviksen, M., Holst, J., Finlayson, G., Wisloff, U., ... & Kulseng, B. (2017). High-intensity interval training, appetite, and reward value of food in the obese. Medicine and science in sports and exercise, 49(9), 1851-1858.
Matos, V. A. F., de Souza, D. C., Browne, R. A. V., dos Santos, V. O. A., Costa, E. C., & Fayh, A. P. T. (2017). Acute effect of high-intensity interval exercise and moderate-intensity continuous exercise on appetite in overweight/obese males: a pilot study. Sport Sciences for Health, 13(2), 403-410.
Odunsi, S. T., Vázquez‐Roque, M. I., Camilleri, M., Papathanasopoulos, A., Clark, M. M., Wodrich, L., ... & Zinsmeister, A. R. (2010). Effect of alginate on satiation, appetite, gastric function, and selected gut satiety hormones in overweight and obesity. Obesity, 18(8), 1579-1584.
Paxman, J. R., Richardson, J. C., Dettmar, P. W., & Corfe, B. M. (2008). Daily ingestion of alginate reduces energy intake in free-living subjects. Appetite, 51(3), 713-719.
Pearson, S., Macaluso, A., & Hussain, S. (2015). High intensity interval training vs moderate intensity continuous training in the management of metabolic type disease. MOJ Anatomy & Physiology, 1(5), 27-33.
Peake, J. M., Tan, S. J., Markworth, J. F., Broadbent, J. A., Skinner, T. L., & Cameron-Smith, D. (2014). Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. American Journal of Physiology-Endocrinology and Metabolism, 307(7), E539-E552.
Poon, E., Sun, F. H., Chung, A., & Wong, S. (2018). Post-Exercise Appetite and Ad Libitum Energy Intake in Response to High-Intensity Interval Training versus Moderate-or Vigorous-Intensity Continuous Training among Physically Inactive Middle-Aged Adults. Nutrients, 10(10), 1408.
Ramos, J. S., Dalleck, L. C., Borrani, F., Mallard, A. R., Clark, B., Keating, S. E., ... & Coombes, J. S. (2016). The effect of different volumes of high-intensity interval training on proinsulin in participants with the metabolic syndrome: a randomised trial. Diabetologia, 59(11), 2308-2320.
Ramos, J. S., Dalleck, L. C., Borrani, F., Beetham, K. S., Mielke, G. I., Dias, K. A., ... & Coombes, J. S. (2017). High-intensity interval training and cardiac autonomic control in individuals with metabolic syndrome: a randomised trial. International journal of cardiology, 245, 245-252.
Ramos, J. S., Dalleck, L. C., Borrani, F., Beetham, K. S., Wallen, M. P., Mallard, A. R., ... & Coombes, J. S. (2017). Low-volume high-intensity interval training is sufficient to ameliorate the severity of metabolic syndrome. Metabolic syndrome and related disorders, 15(7), 319-328.
Sim, A. Y., Wallman, K. E., Fairchild, T. J., & Guelfi, K. J. (2015). Effects of high-intensity intermittent exercise training on appetite regulation. Medicine & Science in Sports & Exercise, 47(11), 2441-2449.
Stensel, D. (2010). Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Annals of nutrition and metabolism, 57(Suppl. 2), 36-42.
Steinert, R. E., Feinle-Bisset, C., Asarian, L., Horowitz, M., Beglinger, C., & Geary, N. (2016). Ghrelin, CCK, GLP-1, and PYY (3–36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiological reviews, 97(1), 411-463.
Türk, Y., Theel, W., Kasteleyn, M. J., Franssen, F. M. E., Hiemstra, P. S., Rudolphus, A., ... & Braunstahl, G. J. (2017). High intensity training in obesity: a Meta‐analysis. Obesity science & practice, 3(3), 258-271.
Tjønna, A. E., Ramos, J. S., Pressler, A., Halle, M., Jungbluth, K., Ermacora, E., ... & Coombes, J. (2018). EX-MET study: exercise in prevention on of metabolic syndrome–a randomized multicenter trial: rational and design. BMC public health, 18(1), 437.
Ueda, S. Y., Miyamoto, T., Nakahara, H., Shishido, T., Usui, T., Katsura, Y., ... & Fujimoto, S. (2013). Effects of exercise training on gut hormone levels after a single bout of exercise in middle-aged Japanese women. Springerplus, 2(1), 83.
Wang, N., Liu, Y., Ma, Y., & Wen, D. (2017). High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life sciences, 191, 122-131.
Wewege, M., Van Den Berg, R., Ward, R. E., & Keech, A. (2017). The effects of high‐intensity interval training vs. moderate‐intensity continuous training on body composition in overweight and obese adults: a systematic review and meta‐analysis. Obesity Reviews, 18(6), 635-646.