تاثیر شش هفته لیگاسیون عصب نخاعی بر سطوح mRNA کاینزین-1 در عصب سیاتیک موش‌های صحرایی نر

نوع مقاله : مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I

نویسندگان

1 عضو هیئت علمی گروه علوم ورزشی دانشگاه ولی عصر(عج) رفسنجان.

2 گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی واحد یزد

چکیده

مقدمه: انتقال آکسونی فرایند حیاتی در سیستم عصبی بوده که نورون و پایانه‌های عصبی را از طریق تهیه پروتئین‌ها، چربی‌ها و میتوکندری و پاک کردن پروتئین‌های تاخورده برای جلوگیری از ایجاد سمیت، حفظ می‌کند. کاینزین-1 یکی از پروتئین های درگیر انتقال آکسونی بوده که در انتقال سریع رو به جلو درگیر است. باتوجه به رایج بودن اختلال پروتئین‌های درگیر در انتقال آکسونی در بیماری های تخریب عصب، هدف این مطالعه بررسی اثر فعالیت کاهش یافته و درد نوروپاتیک بر بیان ژن کاینزین-1 عصب سیاتیک رت های نر ویستار بود. مواد و روش‌ها: 10سر موش صحرایی نر نژاد ویستار با میانگین وزن30±250 گرم به دوگروه کنترل سالمو گروه کاهش فعالیتتقسیم شدند. طی 6 هفته پس از آن آزمون‌های رفتاری درد نوروپاتیک در گروه‌های پژوهشی به طور مستمر انجام شد. در پایان هفته ششم تغییرات بیان ژن کاینزین-1 در عصب سیاتیک با تکنیکReal time  اندازه‌گیری محاسبه شد. نتایج: پس از 6 هفته، آزمون‌های رفتاری درد نوروپاتیک آلوداینیای مکانیکی و پردردی حرارتی نشان داد که در گروهکاهش فعالیتآستانه درد نسبت به گروه کنترل به طور معناداری کمتر بود(05/0>P). همچنین میزان بیان ژن کاینزین-1 در عصب سیاتیک در گروهکاهش فعالیتشده به طور معناداری نسبت به گروه کنترل افزایش یافته بود(05/0>P). نتیجه گیری: به نظر می‌رسد فعالیت بدنی کاهش‌یافته و درد نوروپاتیک با بیان ژن افزایش‌یافته کاینزین-1 در فیبر عصبی سیاتیک مرتبط است. با توجه به اعمال فیزیولوژیک کاینزین-1 در نورونها احتمالاً این شرایط موجب اختلالات عملکردی سیستم عصبی - عضلانی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Six Weeks of Spinal Nerve Ligation on Sciatic Nerve Keynesin-1 Gene Expression in Male Rats

نویسندگان [English]

  • Zahra Mahdavi Jafari 1
  • Niloufar Shojaie 2
1 Faculty member of Vali-e-Asr University of Medical Sciences, Rafsanjan.
2 Department of Sport Physiology, Islamic Azad University, Yazd Branch
چکیده [English]

Background & Objectives: Axonal transmission is a vital process in nervous system that protects neuron and nervous terminals by providing proteins, fats and mitochondria and clearing unfolded proteins to prevent cell toxicity. Keynesin-1 is one of involved proteins in axonal transmission that participates in rapid forward transmission. Therefore, considering the prevalence of dysfunction in proteins associated with axonal transmission in many of neurodegenerative diseases, the of this research was to investigate the effects of decreased physical activity and neuropathic pain on keynesin-1 expression of in male Wistar rats sciatic nerve. Materials & Methods: 10 male Wistar rats (weight: 250±30 gr) were randomly divided into control (C) and decreased physical activity groups (SNL). Through six weeks, neuropathic pain behavior tests were conducted continually in both groups. At the end of the six weeks, the changes in keynesin-1 gene expression in sciatic nerve were measured with Real Time PCR method. Results: The behavioral tests demonstrated that spinal nerve ligation induced thermal hyperalgesia and mechanical allodynia in the SNL group. Decreased pain threshold was observed throughout the study (p<0.05). Additionally, in comparison with the C group, keynesin-1 gene expression in sciatic nerve fibers was significantly higher in the SNL group (p<0.05). Conclusion: It seems that decreased physical activity and neuropathic pain is associated with up regulated keynesin-1 gene expression in sciatic nerve. With respect to keynesin-1 physiologic functions in the nerves, this conditions can likely lead to dysfunction of neuromuscular system.

کلیدواژه‌ها [English]

  • Decreased Physical Activity
  • Keynesin-1
  • Sciatic
 
 
1.     Millecamps S, Julien J-P. Axonal transport deficits and neurodegenerative diseases. Nature Reviews Neuroscience. 2013;14(3):161-76.
2.     Treede R-D, Jensen TS, Campbell J, Cruccu G, Dostrovsky J, Griffin J, et al. Neuropathic pain redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5.
3.     Smith BH, Torrance N, Bennett MI, Lee AJ. Health and quality of life associated with chronic pain of predominantly neuropathic origin in the community. The Clinical journal of pain. 2007;23(2):143-9.
4.     Gong W, Johanek LM, Sluka KA. Spinal Cord Stimulation Reduces Mechanical Hyperalgesia and Restores Physical Activity Levels in Animals with Noninflammatory Muscle Pain in a Frequency-Dependent Manner. Anesthesia and analgesia. 2014.
5.     De Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of Axonal Transport in Neurodegenerative Diseases*. Annu Rev Neurosci. 2008;31:151-73.
6.     Goldstein LS, Yang Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annual review of neuroscience. 2000;23(1):39-71.
7.     Hirokawa N, Sato-Yoshitake R, Kobayashi N, Pfister KK, Bloom GS, Brady ST. Kinesin associates with anterogradely transported membranous organelles in vivo. The Journal of cell biology. 1991;114(2):295-302.
8.     Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985;42(1):39-50.
9.     Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiological reviews. 2008;88(3):1089-118.
10- DEPARTMENTdl A. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY-PART B: BIOCHEMISTRY & MOLECULAR BIOLOGY. 1976.
11- Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125(9):2095-104.
12- LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascaño J, Tokito M, et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron. 2002;34(5):715-27.
13- Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68(4):610-38.
14- Guo ZH, Mattson MP. Neurotrophic factors protect cortical synaptic terminals against amyloidand oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb Cortex. 2000;10(1):50-7.
15- Martin M, Iyadurai SJ, Gassman A, Gindhart JG, Hays TS, Saxton WM. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell. 1999;10(11):3717-28.
16- Cai Q, Pan P-Y, Sheng Z-H. Syntabulin–kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci. 2007;27(27):7284-96.
17- Chan J, Huang J, Lai K, editors. The Kinesin motor protein KIF5B regulates RNA trafficking and dendritic spine morphogenesis in hippocampal neuron. Neuroscience Symposium & Annual Scientific Conference of the Hong Kong Society of Neurosciences; 2016: The University of Hong Kong.
18- Nitta R, Hirokawa N. Kinesin: Fundamental properties and structure.  Encyclopedia of Biophysics: Springer; 2013. p. 1183-91.
19- Noda Y Hirokawa N, , Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009; 10(10):682-96.
20- Lin Y. Kif5b may play a role in impairing mouse memory: a behaviour and cellular study [postgraduate thesis]. The University of Hong Kong (Pokfulam, Hong Kong): The University of Hong Kong; 2013.
21- Argyropoulos G, Stütz AM, Ilnytska O, Rice T, Teran-Garcia M, Rao D, et al. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. physiolgenomics. 2009;36(2):79-88.
22- Rahmati M, Gharakhanlou R, Movahedin M, Mowla SJ, Khazani A, Fouladvand M, et al. Treadmill Training Modifies KIF5B Moter Protein in the STZ-induced Diabetic Rat Spinal Cord and Sciatic Nerve. Archives of Iranian Medicine (AIM). 2015;18(2)
23.   Ho Kim S, Mo Chung J. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50(3):355-63.
24.   Sharma NK, Ryals JM, Gajewski BJ, Wright DE. Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Physical therapy. 2010;90(5):714-25.
25.   Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain. 1996;68(2):293-9.
26.   Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32(1):77-88.
27.   Cotman CW, Engesser-Cesar C. Exercise enhances and protects brain function. Exerc Sport Sci Rev. 2002;30(2):75-9.
28.   Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med. 2010;40(9):765-801.
29.   Hill RD, Storandt M, Malley M. The impact of long-term exercise training on psychological function in older adults. J Gerontol. 1993;48(1):P12-P7.
30.   Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, et al. Neurobiology of exercise. obesity. 2006;14(3):345-56.
31.   Camiletti‐Moirón D, Aparicio V, Aranda P, Radak Z. Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Sports. 2013;23(4):e202-e12.
32.   Kohman RA, Bhattacharya TK, Wojcik E, Rhodes JS. Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J Neuroinflammation. 2013;10(1):114.
33.   Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464-72.
34.   Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, et al. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol. 1999;57(4):421-50.
35.   Lou S-j, Liu J-y, Chang H, Chen P-j. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 2008;1210:48-55.
36.   Perlson E, Maday S, Fu M-m, Moughamian AJ, Holzbaur EL. Retrograde axonal transport: pathways to cell death? Trends in neurosciences. 2010;33(7):335-44.
37.   Zaza C, Baine N. Cancer pain and psychosocial factors: a critical review of the literature. Journal of pain and symptom management. 2002;24(5):526-42.
38.   van den Berg-Emons RJ, Schasfoort FC, de Vos LA, Bussmann JB, Stam HJ. Impact of chronic pain on everyday physical activity. European Journal of Pain. 2007;11(5):587-93.
39.   Ferreira A, Niclas J, Vale RD, Banker G, Kosik KS. Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. The Journal of cell biology. 1992;117(3):595-606.
40.   Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N. KIF5C, a novel neuronal kinesin enriched in motor neurons. The Journal of Neuroscience. 2000;20(17):6374-84.
41.   Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, et al. Targeted Disruption of Mouse Conventional Kinesin Heavy Chain< i> kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria. Cell. 1998;93(7):1147-58.
42.   Macioce P, Gambara G, Bernassola M, Gaddini L, Torreri P, Macchia G, et al. β-Dystrobrevin interacts directly with kinesin heavy chain in brain. Journal of cell science. 2003;116(23):4847-56.
43.   Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68(4):610-38.
44.   Rivera J, Chu PJ, Lewis TL, Arnold DB. The role of Kif5B in axonal localization of Kv1 K+ channels. European Journal of Neuroscience. 2007;25(1):136-46.
45.   Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, MacAskill AF, Rostaing P, Lumb MJ, et al. Delivery of GABA< sub> A Rs to Synapses Is Mediated by HAP1-KIF5 and Disrupted by Mutant Huntingtin. Neuron. 2010;65(1):53-65.
46.   Toda H, Mochizuki H, Flores R, Josowitz R, Krasieva TB, LaMorte VJ, et al. UNC-51/ATG1 kinase regulates axonal transport by mediating motor–cargo assembly. Genes & development. 2008;22(23):3292-307.
47.   Su Q, Cai Q, Gerwin C, Smith CL, Sheng Z-H. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nature cell biology. 2004;6(10):941-53.
48.   Rahmati M, Gharakhanlou R, Movahedin M, Mowla SJ, Khazeni A, Mazaheri Z. Effects of Endurance Training on mRNA levels of the KIF1B Motor Protein in Sensory areas of the Spinal Cord of Rats with Diabetic Neuropathy. Modares Journal of Medical Sciences: Pathobiology. 2013;16(2):25-38.