Investigation of physiological effects (immune system) of Exercise in COVID-19 epidemic; By providing a training protocol (Systematic review)

Document Type : Review Article I Open Access I Released under (CC BY-NC 4.0) license

Authors

1 Assistant Professor, Department of Physical Education, Imam Ali (AS) University, Tehran, Iran.

2 Assistant Professor, Department of Physical Education, Amin University of Law Enforcement Sciences, Tehran, Iran.

3 . PhD Student in Sports Physiology, Department of Sports Physiology and Corrective Movements, Urmia University, Urmia, Iran.

Abstract

Aim: Coronaviruses are a large family of viruses that cause a variety of illnesses, from the common cold to the acute respiratory distress syndrome, or SARS. The virus spread after the outbreak in China and some countries in Iran, which led to the closure of sports venues and places. This shutdown, despite its benefits to prevent the spread of the disease, on the other hand, lack of physical activity weakens the immune system and the spread of mental illness. Therefore, the aim of this study was to investigate the physiological effects of exercise on the Covid-19 pandemic. Methods: In the present study, by examining the databases of Pupmed, SID, Google Scholar, Springer, studies related to the effect of exercise on the immune system and information related to coronavirus were selected. The contents of the articles were summarized and reported. Results: By examining the effects of exercise on the immune system, it was found that moderate-intensity exercise is the best way to increase the response of immune system factors in the Covid-19 pandemic. Conclusion: According to studies, it seems that exercise is one of the ways to strengthen the immune system not only in the case of coronavirus, but also as an effective method of prevention against other diseases. Infectious and non-infectious to be used.

Keywords


  1. 1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-273.
  2. 2. Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 2020;9(4):920.
  3. 3. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report-712020.Available from: https://www.who.int/ docs/default-source/coronaviruse/situationreports/20200331-sitrep-71-covid-19.pdf?sfvrsn=4360e92b_8.
  4. 4. Mohsenifar A, Dosti M, Hosseini Nia SR, Tabesh S. Postponing Football Matches in Iran to Reduce Human-to-Human Transmission of SARS-CoV-2. J Mil Med. 2020;22 (2):214-215. doi:10.30491/JMM.22.2.214.
  5. 5. Shirvani H, Rostamkhani F. Exercise Considerations during Coronavirus Disease 2019 (COVID-19) Outbreak: A Narrative Review. J Mil Med. 2020; 22 (2):161-168. doi: 10.30491/JMM.22.2.161.
  6. 6. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. Journal of sport and health science. 2019;8 (3): 201-17. doi:10.1016/j.jshs.2018.09.009
  7. 7. Khodabakhshi-koolaee A. Living in Home Quarantine: Analyzing Psychological Experiences College Student's in COVID-19. J Mil Med. 2020; 22 (2):130-138. doi: 10.30491/JMM.22.2.130
  8. 8. Shahyad S, Mohammadi M T. Psychological Impacts of Covid-19 Outbreak on Mental Health Status of Society Individuals: A Narrative Review. J Mil Med. 2020; 22 (2):184-192. doi: 10.30491/JMM.22.2.184     
  9. 9. Abachizadeh A. Review of Future Trends of the Coronavirus Disease 2019 (COVID-19) Epidemic Based on Developed Forecasting Models in the World. Salamat. 2020; 7(2):221-230.
  10. 10. Evans, A. B., Blackwell, J., Dolan, P., Fahlén, J., Hoekman, R., Lenneis, V., & Wilcock, L. (2020). Sport in the face of the COVID-19 pandemic: towards an agenda for research in the sociology of sport. European Journal for Sport and Society, 15, 85-95.
  11. 11. Gospel, J . Unyime-Young, M. (2020). Covid 19: Assessing the Socio-Economic Effect of The Corona Virus Pandemic. International Journal of Surgery, 78, 185-193.
  12. 12. Narici, M., De Vito, G., Franchi, M., Paoli, A., Moro, T., Marcolin, G., ... & Di Girolamo, F. G. (2020). Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. European Journal of Sport Science,1, 1-22.
  13. 13. Crawford, J., Butler-Henderson, K., Rudolph, J., & Glowatz, M. (2020). COVID-19: 20 Countries' Higher Education Intra-Period Digital Pedagogy Responses. Journal of Applied Teaching and Learning (JALT), 3(1).25-35.
  14. 14. Basilaia, G., & Kvavadze, D. (2020). Transition to online education in schools during a SARS-CoV-2 coronavirus (COVID-19) pandemic in Georgia. Pedagogical Research, 5(4), 1-9
  15. 15. Brooks, S.K.;Webster, R.K.; Smith, L.E.;Woodland, L.;Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 10227. [CrossRef]
  16. 16. Booth, F.W.; Roberts, C.K.; Thyfault, J.P.; Ruegsegger, G.N.; Toedebusch, R.G. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol. Rev. 2017, 97, 1351–1402.[CrossRef] [PubMed]
  17. 17. Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. E
    ect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [CrossRef]
  18. 18. Lees, S.J.; Booth, F.W. Sedentary death syndrome. Can. J. Appl. Physiol. 2004, 29, 447–460. [CrossRef] [PubMed]
  19. 19. Castrogiovanni, P.; Trovato, F.M.; Szychlinska, M.A.; Nsir, H.; Imbesi, R.; Musumeci, G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 2016, 31, 1183–1194. [PubMed]
  20. 20. Musumeci, G. Sarcopenia and Exercise “The State of the Art”. J. Funct. Morphol. Kinesiol. 2017, 2, 40. [CrossRef]
  21. 21. Castrogiovanni, P.; Di Rosa, M.; Ravalli, S.; Castorina, A.; Guglielmino, C.; Imbesi, R.; Vecchio, M.; Drago, F.; Szychlinska, M.A.; Musumeci, G. Moderate Physical Activity as a Prevention Method for Knee Osteoarthritis and the Role of Synoviocytes as Biological Key. Int. J. Mol. Sci. 2019, 20, 511. [CrossRef] [PubMed]
  22. 22. Szychlinska, M.A.; Castrogiovanni, P.; Trovato, F.M.; Nsir, H.; Zarrouk, M.; Lo Furno, D.; Di Rosa, M.; Imbesi, R.; Musumeci, G. Physical activity and Mediterranean diet based on olive tree phenolic compounds from two di erent geographical areas have protective e
    ects on early osteoarthritis, muscle atrophy and hepatic steatosis. Eur. J. Nutr. 2019, 58, 565–581. [CrossRef] [PubMed]
  23. 23. Ghinai I, McPherson TD, Hunter JC, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. The Lancet. doi:10.1016/S0140-6736(20)30607-3
  24. 24. Marseglia L, Manti S, D'Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. International journal of molecular sciences. 2014; 16(1): 378-400. doi:10.3390/ijms16010378
  25. 25. Mousavi SN, Saboori S, Asbaghi O. Effect of daily probiotic yogurt consumption on inflammation: A systematic review and meta-analysis of randomized Controlled Clinical trials. Obesity Medicine. 2020; 18100221. doi:https://doi.org/10.1016/j.obmed.2020.100221
  26. 26. Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine. 2020. doi:10.1038/s41591-020-0819-2
  27. 27. Chinchu JU, Mohan MC, Prakash Kumar B. Anti-obesity and lipid lowering effects of Varanadi kashayam (decoction) on high fat diet induced obese rats. Obesity Medicine. 2020; 17100170. doi:https://doi.org/10.1016/j.obmed.2019.100170
  28. 28. Tavvafian N, Darabi H, Ahani A, et al. Effects of glycyrrhizic acid supplementation during nonlinear resistance training on inflammatory markers and muscular damage indices in overweight young men. Obesity Medicine. 2020; 17100178. doi:https://doi.org/10.1016/j.obmed.2019.100178
  29. 29. Fisher D, Heymann D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC Medicine. 2020; 18(1): 57. doi:10.1186/s12916-020-01533-w
  30. 30. Williams PT. Reduced total and cause-specific mortality from walking and running in diabetes. Medicine and science in sports and exercise. 2014; 46(5):933.
  31. 31. Kohut ML, Arntson BA, Lee W, Rozeboom K, Yoon KJ, Cunnick JE, et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. 2004;22(17- 18):2298-306.
  32. 32. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34(4):246-51.
  33. 33. Rowbottom DG, Green KJ. Acute exercise effects on the immune system. Med Sci Sports Exerc. 2000;32(7 Suppl):S396-405.
  34. 34. Peake JM, Suzuki K, Hordern M, Wilson G, Nosaka K, Coombes JS. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol. 2005;95(5-6):514-21.
  35. 35. Nieman DC, Miller AR, Henson DA, Warren BJ, Gusewitch G, Johnson RL, et al. Effect of high- versus moderate-intensity exercise on lymphocyte subpopulations and proliferative response. Int J Sports Med. 1994;15(4):199-206.
  36. 36. McCarthy DA, Dale MM. The leucocytosis of exercise. A review and model. Sports Med. 1988;6(6):333- 63.
  37. 37. Sim YJ, Yu S, Yoon KJ, Loiacono CM, Kohut ML. Chronic exercise reduces illness severity, decreases viral load, and results in greater anti-inflammatory effects than acute exercise during influenza infection. J Infect Dis. 2009;200(9):1434-42.
  38. 38. Beavers KM, Brinkley TE and Nicklas BJ. Effect of exercise training on chronic inflammation. Clinica chimica acta; international journal of clinical chemistry. 2010; 411: 785-93.
  39. 39. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop N, et al. Position statement part one: immune function and exercise. 2011.
  40. 40. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the regulation of immune functions. Progress in molecular biology and translational science. 135: Elsevier; 2015. p. 355-80.
  41. 41. Campbell JP, Turner JE. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front Immunol. 2018a9:648.
  42. 42. Pedersen B, Rohde T, Zacho M. Immunity in athletes. The Journal of sports medicine and physical fitness. 1996;36(4):236-45.
  43. 43. Scheffer DdL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2020;1866(10):165823.
  44. 44. Highton PJ, White AEM, Nixon DGD, Wilkinson TJ, Neale J, Martin N, et al. Influence of acute moderate- to high-intensity aerobic exercise on markers of immune function and microparticles in renal transplant recipients. American Journal of Physiology-Renal Physiology. 2020a318)1(:a76-a85.
  45. 45. de Souza DC, Matos VAF, dos Santos VOA, Medeiros IF, Marinho CSR, Nascimento PRP, et al. Effects of High-Intensity Interval and Moderate-Intensity Continuous Exercise on Inflammatory, Leptin, IgA, and Lipid Peroxidation Responses in Obese Males. Frontiers in Physiology. 2018;9(567).
  46. 46. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiology Review. 2000;80(3):1055-81.
  47. 47. de Souza DC, Matos VAF, dos Santos VOA, Medeiros IF, Marinho CSR, Nascimento PRP, et al. Effects of High-Intensity Interval and Moderate-Intensity Continuous Exercise on Inflammatory, Leptin, IgA, and Lipid Peroxidation Responses in Obese Males. Frontiers in Physiology. 2018;9(567).
  48. 48. Gleeson M. Immune function in sport and exercise. Journal of Applied Physiology (Bethesda, Md : 1985). 2007;103(2):693-9.
  49. 49. Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: inoculating populations with healthy living medicine in preparation for the next pandemic. Prog Cardiovasc Dis. 2020. https ://doi.org/10.1016/j.pcad.2020.04.006.
  50. 50. Campbell, J.P.; Turner, J.E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018, 9, 648. [CrossRef] [PubMed]
  51. 51. Nieman, D.C.;Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [CrossRef] [PubMed]
  52. 52. Wu, S.; Ma, C.; Yang, Z.; Yang, P.; Chu, Y.; Zhang, H.; Li, H.; Hua,W.; Tang, Y.; Li, C.; et al. Hygiene Behaviors Associated with Influenza-Like Illness among Adults in Beijing, China: A Large, Population-Based Survey. PLoS ONE 2016, 11, e0148448. [CrossRef] [PubMed]
  53. 53. Bachi, A.L.; Suguri, V.M.; Ramos, L.R.; Mariano, M.; Vaisberg, M.; Lopes, J.D. Increased production of autoantibodies and specific antibodies in response to influenza virus vaccination in physically active older individuals. Results Immunol. 2013, 3, 10–16. [CrossRef] [PubMed]
  54. 54. Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. E
    ect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [CrossRef]
  55. 55. Lees, S.J.; Booth, F.W. Sedentary death syndrome. Can. J. Appl. Physiol. 2004, 29, 447–460. [CrossRef] [PubMed]
  56. 56. Castrogiovanni, P.; Trovato, F.M.; Szychlinska, M.A.; Nsir, H.; Imbesi, R.; Musumeci, G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 2016, 31, 1183–1194. [PubMed]
  57. 57. Musumeci, G. Sarcopenia and Exercise “The State of the Art”. J. Funct. Morphol. Kinesiol. 2017, 2, 40. [CrossRef]
  58. 58. Castrogiovanni, P.; Di Rosa, M.; Ravalli, S.; Castorina, A.; Guglielmino, C.; Imbesi, R.; Vecchio, M.; Drago, F.; Szychlinska, M.A.; Musumeci, G. Moderate Physical Activity as a Prevention Method for Knee Osteoarthritis and the Role of Synoviocytes as Biological Key. Int. J. Mol. Sci. 2019, 20, 511. [CrossRef] [PubMed]
  59. 59. Sun L, Sun Z, Wu L, Zhu Z, Zhang F, Shang Z, et al. Prevalence and Risk Factors of Acute Posttraumatic Stress Symptoms during the COVID-19 Outbreak in Wuhan, China. medRxiv. 2020.
  60. 60.Taguchi T, Mukai K (2019) Innate immunity signalling and membrane trafcking. Curr Opin Cell Biol 59:1–7. https://doi.org/10.1016/j. ceb.2019.02.002.
  61. 61. Donath MY, Meier DT, Böni-Schnetzler M (2019) Infammation in the pathophysiology and therapy of cardiometabolic disease. Endocr Rev 40(4):1080–1091.
  62.  
  63. 63. Quirch M, Lee J, Rehman S (2020) Hazards of the cytokine storm and cytokine-targeted therapy in COVID-19 patients: a review. J Med Int Res.
  64. 64.Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect.
  65. 65.Green SJ (2020) Covid-19 accelerates endothelial dysfunction and nitric oxide defciency. Microbes Infect 22(4–5):149–150.
  66. 66.Hofmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8.
  67. 67.Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 85(2):873–882.
  68. 68.Nunes-Silva A, Rocha GC, Magalhaes DM, Vaz LN, Salviano de Faria MH, Simoes E Silva AC (2017) Physical exercise and ACE2-angiotensin-(1–7)-mas receptor axis of the renin angiotensin system. Protein Pept Lett 24(9):809–816.
  69. 69.Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485):1444–1448.
  70. 70. Zhang J, Dong J, Martin M, He M, Gongol B, Marin TL, Chen L, Shi X, Yin Y, Shang F, Wu Y, Huang H-Y, Zhang J, Zhang Y, Kang J, Moya EA, Huang H-D, Powell FL, Chen Z, Shyy JY-J et al (2018) AMP-activated protein kinase phosphorylation of angiotensin-converting enzyme 2 in endothelium mitigates pulmonary hypertension. Am J Respir Crit Care Med 198(4):509–520.
  71. 71. Prata LO, Rodrigues CR, Martins JM, Vasconcelos PC, Oliveira FMS, Ferreira AJ, da Rodrigues-Machado MG, Caliari MV (2017) Original research: ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fbrosis. Exp Biol Med 242(1):8–21.
  72. 72. Zbinden-Foncea H, Francaux M, Deldicque L, Hawley JA (2020) Does high cardiorespiratory ftness confer some protection against proinfammatory responses after infection by SARS-CoV-2? Obesity (Silver Spring).
  73. 73. Ersilia Nigro· Rita Polito· Andreina Alferi· Annamaria Mancini· Esther Imperlini  · Ausilia Elce  · Peter Krustrup6,· Stefania Orrù· Pasqualina Buono· Aurora Daniele. Molecular mechanisms involved in the positive efects of physical activity on coping with COVID‑19. European Journal of Applied Physiology (2020) 120:2569–2582.
  74. 74. Ahmadi Hekmatikar A H, Molanouri Shamsi M. Effect of Exercise on Immunological Indicators During the COVID-19 Pandemic. J Arak Uni Med Sci. 2020; 23 (5) :584-603.
  75. 75. Ahmadizad, Sajjad, Basami, Minoo. The role of exercise in improving the immune system and coronary heart disease (COVID-19) and providing relevant exercise guidelines. Physiology of Exercise and Physical Activity,(2021) 13 (1), 1-15.
  76. 76. Shirvani H, Rostamkhani F. Exercise Considerations during Coronavirus Disease 2019 (COVID-19) Outbreak: A Narrative Review. J Mil Med. 2020; 22 (2) :161-168.
  77. 77. Sallis R, Young DR, Tartof SY, et al. Br J Sports Med Epub ahead of print: [please include Day Month Year]. doi:10.1136/ bjsports-2021-104080.
  78. 78. Kaur H, Singh T, Arya YK and Mittal S (2020) Physical Fitness and Exercise During the COVID-19 Pandemic: A Qualitative Enquiry. Front. Psychol. 11:590172. doi: 10.3389/fpsyg.2020.590172